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1 INTRODUCTION 

Numerical and analytical techniques are used for the design and setup of small rooms. At low 
frequency the finite element method (FEM)

1
 or boundary element method (BEM)

1
 are applicable. 

These simulation techniques can be used for arbitrary geometries, and have the benefit of solving 
the wave equation “exactly”, in the sense that mesh refinements result in convergence to the true 
solution with exact arithmetic. Thus diffraction, which is an important phenomenon at low frequency, 
will be included, as it is predicted by the wave equation. However as frequency increases the 
required element size decreases, and the computational requirements for CPU time, memory and 
storage space increase rapidly. Ray tracing, an alternative simulation technique, is not good at 
modeling diffraction, and hence not appropriate for low frequency analysis, but is useful for high 
frequency analysis where diffraction effects are negligible. There is clearly benefit in extending the 
frequency range over which FEM can be used. This paper considers analysis of rooms of constant 
height, when various hybrid methods, FE/part analytical can be used. It extends previous work

2
, 

employing these techniques in the frequency domain, to transient analysis. 

 
 

2 MODAL APPROACHES TO TRANSIENT ANALYSIS 

2.1 3D Modal Transient Analysis 

The pressure field in a fluid medium due to acoustic vibrations satisfies the wave equation. 
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where c is the speed of sound and  txS , is a source density term. In the current work a single 

point source is considered. 
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The extension to a distribution of sources is straightforward. If the acoustic domain is a cavity V with 
rigid boundaries, then the pressure distribution can be efficiently described as a linear combination 

of the cavity modes. Let ....,, 321  be the eigenmodes with the Neumann boundary condition, 

with associated circular frequencies ...,, 321   and assume that they are orthonormalized such 

that 
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An arbitrary pressure distribution in the cavity, satisfying the rigid boundary condition, can be 
represented as a sum of modal contributions 
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Substituting this into the wave equation, multiplying by n  , integrating over the volume and using 

the orthonormal properties results in a differential equation for the modal contribution factor n . 
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In the transient analysis results of section 4, the source term will be assumed to be a pulse of 
duration τ given by 
 

 
   
 























t

ttt

tf

for                                    0

for t     
/2

212
6

22

      (6) 

 
The differential equation (5) can be solved using standard techniques. 
 

     
   














ttBtA

ttgtBtA

nnn

nnnnn

n
for                 sin'cos'

for       sincos

n

     (7) 

 

The particular integral is  tgn , a 5
th
 degree polynomial. The trigonometric terms are the 

complimentary function. The constants are chosen to satisfy the initial and continuity conditions. 
 
The above approach can be modified to include absorption either as modal damping or by 
computing complex modes for a cavity with absorbent boundaries. 
 
 

2.2 2.5D Approach 

If the room has constant height h, then the 3D room modes are easily constructed from the 2D 

modes of the cross section. If ....,, 321   are the cross section modes, with radian frequencies 

...,, 321   and the n  are scaled to be orthonormal with respect to integration over the cross 

section area, then the 3D modes are given by 
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with associated circular frequencies 
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where 
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Computing the 2D cross section modes is a significantly smaller computational task than computing 
the 3D modes. 
 
 

2.3 Inverse Fourier Transform Approach 

An alternative approach to compute a linear transient solution, is to compute results initially in the 
frequency domain and then use an inverse Fourier transform. The frequency domain analogue of 
the wave equation is the Helmholtz equation, with a source term included this is 
 

 0
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The modal contribution factors can be determined as 
 

      (12) 

 
As above, for a room of constant height, rapid computation can be achieved using equations (8) 
and (9) as in previous work

2
. 

 

3 FOURIER SERIES APPROACH 

An alternative 2.5D transient approach is to express the pressure distribution and source function 
as Fourier series through the height, rather than using a modal expansion. 
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After substituting into the wave equation (1) and using the orthogonality of the trigonometric terms, 
a modified wave equation for the cross section distributions can be derived 
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Thus it is possible to solve for the  tyxpn ,,  distributions using 2D FEM and combine to obtain the 

full 3D pressure distribution using equation (13). 
 
 

4 ANALYTIC VERIFICATION 

A cuboid room with rigid walls can be analysed using the method of mirror images. The point source 
is reflected  repeatedly in all 6 walls to obtain a lattice of image sources. The solution is obtained as 
a sum of contributions from this infinite set of sources. However, for a particular receiver point, and 
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time t, only a finite number of terms need to be considered. Using this method, an analytic solution 
was produced for a 1m x 1m x 1m cavity, with source at (0,0,0), pulse duration 0.0015 seconds and 
receiver points (1,0,0), (1,1,0) and (0.5,0.5,0.5). The speed of sound was taken as 340 ms

-1
 for both 

the cube analysis and the room in the next section. The analytic results are shown in figure 1. 
 

 
 
Figure 1    analytical pressure in cubical cavity 
 
Results were computed using both modal and Fourier 2.5D approaches, using the cross section 
mesh shown in phase 2, consisting of 3200 linear triangles and 1681 nodes. 
 

 
Figure 2    cross sectional mesh for cuboid problem 
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For the 2.5D Fourier approach, a time step of 0.00005 seconds was used. Both Fourier and modal 
approaches used a maximum of 20 half wavelengths through the height. For the modal approach 
400 cross section modes were used. The results fro the Fourier and modal approaches are shown 
in figures 3 and 4 respectively. 
 

 
 
Figure 3     2.5D Fourier method results for cube 
 

 
 
Figure 4     2.5D modal method results for cube 
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The Fourier 2.5D results are in excellent agreement with the analytical solution.  Ther modal result 
at (1,0,0) has some initial spurious oscillations, at low amplitude, which need further investigation, 
but the modal results generally are good.  
 

5 IRREGULAR CROSS SECTION EXAMPLE 

A transient acoustic analysis was performed for a more irregular-shaped room. The cross section is 
shown in figure 5. The height used was 2.94m and the source was taken to be a distance 0.2m from 
neighbouring walls and floor. The pulse duratiomn was 0.006 seconds. The receiver point was 
taken at ceiling height in the corner. Comparison is made with a 3D finite element model, using a 
direct time marching scheme. The finite element model, shown in fugure 6 comprises of 21252 
quadratic elements and 90275 nodes. 2.5D results, using both Fourier and modal approaches, were 
computed using the cross section mesh in figure 7, comprising of 5901 linear triangle and 3067 
nodes, and taking a maximum of 30 half wavelengths through the height. The three sets of results 
are shown in figure 8. The agreement is good, particularly at early times.  The two 2.5D approaches 
agree more closely with each other than with the 3D model. This is to be expected since they use 
the same mesh. 
 
The 2.5D approaches were several orders of magnitude faster than the 3D computation. 
 

 
Figure 5     Cross section of room 
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Figure 6     3D FE model of room 
 

 
Figure 7  Cross section mesh for irregular room 
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Figure 8    Comparison 3D FE and 2.5D results 
 
 

6 ROOMS OF ALMOST CONSTANT HEIGHT 

In practice many rooms are not precisely of constant height. To investigate the effect of minor 
deviations from the constant height assumption, for the irregular room, the 3D model was 
reanalysed, but with a reduction of 0.15m at the front as shown in figure 9. The com-parison of 
results is in figure 10. At early times the responsesd are identical. There is a tendency for the 
discrepancy to increase as time progresses, but there are some well matched peaks at quite late 
time. These may relate to mul;tiple reflections off surfaces in the section containing the source, 
where the height is constant. 
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Figure 9   3D FE model with variation in height 
 

 
 
Figure 10      minor deviation from “constant height” 
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7 AURALISATION 

7.1 Auralisation of Output from 2.5D Analysis 

Auralisation enables acoustic engineers to make a more direct assessment of aspects of sound 
quality than visually observing features on a frequency response graph.  It has been a feature of 
numerous room simulation products based on ray tracing but is seen to a lesser extent in FEM/ 
BEM predictions.  A probable reason for this is because FEM/ BEM approaches become 
increasingly expensive as frequencies are increased in a large problem domain which has, in a 
room acoustics context relegated the method to low frequency analysis only.  Using the 2.5D 
approach, these problems are largely overcome making it possible to return solutions extending 
much higher in frequency thus permitting a more complete audible assessment of room/ system 
designs. 
 
The results presented below are based on an inverse Fourier transform of frequency domain 
results, as in section 2.3. A modal damping coefficient of 0.02 was used. Further work will consider 
the use of direct transient analysis results for auralisation. 
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Figure 11 

 
 

 Inverse Fourier Transform 
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Figure 12 

 

 Normalising and Resampling (for .WAV conversion) 
 

 Extraction of data from Audio Excerpt (.WAV format) 
 

 Convolution of Room Impulse Response with Audio Excerpt 
 

 Export of result in .WAV Format ready for playback 
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7.2 Comparison with Measured Room Responses 
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Figure 13 – Source Determination and Room Measurement 

 

100 1k

100 

80 

60 

40 

Room Response Divided by Loudspeaker Response

(dB)  Level, Sound pressure

Frequency  (Hz)

20 50 200 500 2k

90 

70 

50 

Calc curves n->1

 
Figure 14 – Room Response with Loudspeaker Response Removed 
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Figure 15 

 
One source of mismatch between the synthesised and measured data is that the source is non-
ideal.  A small 2 way loudspeaker was chosen based on what was available.  A positive aspect of 
the choice was that it was relatively small and of sealed box design which simplified matters.  The 
bass extension was limited meaning that background noise would be an inevitable consequence at 
the lowest frequencies which is evidenced by spurious peaks in the response between 20 and 
30Hz. 
 
Despite efforts to locate its acoustic centre at low frequency in a succession of measurements 
around the cabinet (which was determined to be 70mm in front of the bass driver), the loudspeaker 
used in the measurements clearly does not behave as a simple monopole source throughout the full 
frequency range of interest and the comparison between experimental and simulated scenarios can 
only be considered suitable below ~500Hz in the case presented.  The comparisons in the appendix 
further illustrate the divergence between the experimental and simulated data suspected to be a 
combination of near-field measurement of the 2 way loudspeaker in front of the bass driver, slight 
deviations in the room geometry (not exactly constant in cross section) and the result of increasing 
directivity in the loudspeaker used for measurements. 
 

7.3 Areas of Applicability 

Automobile audio system design would be an ideal application of auralisation using the 2.5D 
method.  The problem domain is limited in size and therefore solutions can be returned that extend 
to higher frequencies at lower computational cost.  Phenomena such as diffraction are automatically 
considered which would account for the presence of objects in the vicinity of the listener (seats, 
head rests etc.).  A limitation would be in establishing the axis in which there are negligible 
variations in the cross sectional detail. 
 
Critical listening spaces where a specific listening position is defined may benefit from this approach 
and the ability to place absorbent layers in the space may help designers converge more rapidly on 
room layouts. 
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8 FURTHER WORK/CONCLUSIONS 

An efficient method for the computation of the frequency response of a room and its subsequent 
application to auralisation was described.  The work has shown an application of the 2.5D approach 
in a small room reaching frequencies where conventional 3D finite or boundary element methods 
would become prohibitively expensive.  The 2.5D method provides a useful development tool for 
designers who may require numerous runs in order to converge on a design and expect solutions to 
become available rapidly. 
 
A further refinement would be to produce auralisations based upon the output of transient 2.5D 
analysis. 
 
The aural assessment of rooms where only part of the spectral content is available is not ideal and 
an area of further study might be to combine the results from the lower frequency range with a 
higher frequency analysis, perhaps from a ray-tracing model.  Taking this approach would preserve 
the predictive aspect of simulation driven design whilst enabling the design to select the most 
efficient method. 
 
Although the results presented here are based on a single receiver point and are therefore mono, 
the integration of a matrix of these responses with a sophisticated playback system such as that 
described by Blauert

3
 is entirely possible.  As a predictive counterpart to measurements that might 

normally be performed using a mannequin in an existing space, there is scope to supply a database 
of room impulse responses of a nonexistent room in an array corresponding to small head rotations.  
A model of the human head and ear detail could also be applied as a post processing step (head 
related transfer functions).  These may in turn be used in a head tracked playback system 
addressing motional aspects of spatial hearing. 
 
Despite being able to define numerous sources, currently the only source type that can be specified 
is an ideal point source.  There are few (if any) loudspeakers that radiate sound in such a way 
beyond the lowest frequencies and a future enhancement could be to make the sources more 
realistic in the model by including specific frequency response and directivity descriptors. 
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10 APPENDICES 

10.1 Comparisons of Modelled and Measured Room Frequency Responses 
(unsmoothed and 3rd octave smoothed) 

The comparisons below illustrate what happens when the source and receiver are moved to 
different locations in the room. 
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(d) 
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(e) 
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(f) 
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