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1. INTRODUCTION

Optimising the parameters that control transducer array beampatterns grows in difficulty with
the complexity of the array and the incompatibility of the directivity requirements. The easiest
cases suGh as:the.uniform line array require. onlv simple- formulae, but more perverse situations,
conformal arrays for example, call for computer intensive optimisation routines. An alternative
is to use some approximation technique to find parameters that best fit the beampattern
equations to ‘the-requirements as'defined at a number of discrete points in terms of angular
bearing and array response. Such an approach, using a linear least-squares method, has
previpusly; begn, demonstrated by the present uthors in a:manual form:for line arrays [1], plane
arrays;[2,3] and. fully.three-dimensional arrays {4].

This procedure is straightforward and for simple arrays can produce results at the first attempt,
perhaps requiring a second pass to refine the solution. For large planar and 3D arrays with
complex directivity requirements that include steered nulls and constraints on beamwidth or DI
the process rapidly becomes tedious and time-consuming. The bulk of this effort, however, is
consumed in examining the beampattern. produced and.comparing this with the requirements in
order to define a new set of points that might achieve a better result. These are all tasks that are
easily, carried out by.a computer, and in this.paper an automated.algorithm is presgnted that:is
¢apable of quickly, and efficiently locating the best values for (complex). shadipg caefficients
given a, possibly . conflicting specification . including beamwidths. . sidelobe . levels and..null
directions;

The formulation includes element directivities, frequency ‘responsés; mutual: coipling: and: othier
damplicating fastors ehcduttered-in-practice; so direct application: to: thedesign. of: sonart agrays
éak ‘e undertaken withiconfideice; Neverthieless; the examples presented hete are 'testiicied to
the ubigiitdds unifsrmty spaced: line of omnidirectional eleiérits. THiis-is‘simply 5o that iresults
itiay: e prebetted-itiat easily assimilible:form that clearly demonstrates the power and reliability
of the method.

2. THE METHOD-
The- theoty: and:- mathematicat: formulatiqn .of :the: least-squares array. shading algerithm were

explained at:length in [1] for;line:arrays and for. completely: general:3-timensional gedmetries:in
[4]. The:application, of the. method to particular;array. design problems;:however, hasnotibeen
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Fig.1 Geometry and coordinate system.
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discussed.in; any dqtail. An explanation of
- the manual procedure will be given here and

then it should be obvious how this sequence
of events can be formalised and coded as a
computer program.

The general coordinate system to be
considered - is sketched in Figure L.
Generally, the array is contained within the

“3:dimensional ‘blob’, but for the line array

examples, the transducer elements lie along
the'x axis, and the beampattern is plotted in
the xz plane as function of bearing 8, with ¢
‘being set to zero.

The. examples presented in earlier papers

[1-4] demanstrate the application of the algorithm to finding coefficientsi that reproduce a given
beampattern, and this may be considered .a somewhat artificial situation. More commadn-is the
requirement to find shading that will produce a pattern detined 1n terms of a basic pHrameter like
sidelobe level. The procedure. adopted then is straightforward; the first step is to specify the:
required beampattern, and for this example this is simply: a.statement.of desired sidelobe levels.

The second step is to identify a feasible solution as a' point :of departure;. the algorithm ¢annot
find coefficients for a beampattern that is not realisable:with 1the given-array geometry. If
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Fig.2 Line array beampatterns for unshaded

_array(dash-dot), first (dashes), second

(dots) and' final (solid line} manudl
algorithm iterations.
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strading .for a pattern close tb e
requirement is known thericthis .cafy be used
to initiate the proctss, otherwise uniform
shading is as good a starting ipeint as any.
The bearings.of the sidelobes: inithis pattérm
must be located, and their polarity noted,
so that a required pattern definition can be
prepared fo apply the required level at
these locations; aleng with wnit amplitude
in-the main bears direction.

iChe least-squares :approximation is next
applied using this definition to obtaip a dew
set of coefficients and a corresponding
beampattern. This new patem will be
eloser to the requirement than the original;
but sidelobes may move as their level is
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Table 1. Sidelobe locations and levels for successive algorithm iterations.

Uniform st Iteration " 2nd Iteration Final Shading
0/deg Level/dB @/deg Level/dB O/deg Level/dB 6/deg Level/dB
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+16.7 -13.0 +21.0 -22.3 +23.7 -333 +24.4 -40.0
+29.6 -16.9 +33.9 -30.9 +33.8 -40.0 +33.3 -40.0
+44.2 -19.0 +47.9 -36.5 +46.4 -39.6 +46.2 -40.0
+64.0 -19.9 +66.2 -39.6 +65.1 -40.0 +65.0 -40.0

Table 2. Shading coefficients for successive algorithm iterations and Chebychev

-40dB shading.
Element  Uniform Ist Iteration 2nd Iteration Final Chebychev
1710 1.0000 0.2236 0.1376 0.1253 0.1253
2/9 1.0000 0.5174 0.3444 0.3154 0.3154
3/8 1.0000 0.7569 0.6130 0.5802 0.5802
477 1.0000 09187 0.8577 0.8390 0.8390

5/6 1.0000 1.0000 1.0000 1.0000 1.0000

—
———

lowered, and the result may not be exact. In this case the new sidelobe positions should be
located and the process repeated until the desired pattern is achieved.

Figure 2 demonstrates application of this procedure to a 10-element line array with A/2 spacing
and the objective of a uniform -40dB sidelobe level. This can be achieved to within +0.1dB in
three iterations. The initial unshaded pattern is shown as the dash-dot line, with the first and
second iterations as dashed and dotted lines respectively and the final result as the solid line.
The sidelobe locations and levels in dB for each stage of the procedure are listed in Table 1,
along with the shading coefficients obtained at each stage in Table 2. For comparison, the
coefficients for -40dB Chebychev shading are also given in the table, and it will be seen that
these are identical to the values obtained with the least-squares algorithm to at least four
decimal places.

This simple procedure may be formalised as the block diagram in Figure 3. The functions of
most of the blocks are obvious but the three critical elements, those labelled 'Locate Sidelobes,
Nulls, etc.', ‘Meets Requirements?', and 'Determine Pattern Definition', require further comment.
This is because the process as described above is somewhat brutal and liable to become
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Fig.4 Formalised shading procedure block
diagram.
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unstable, leading either to completely
meaningless results or a closed loop
where the pattern found by the least-
squares algorithm hops between two
stable states.

A human operator, especially one with
some understanding of the behaviour of
arrays and beamformers, can intuitively
influence each stage of the iteration by
choosing new pattern definitions that are
likely to produce sensible results. A
computer program, of course, is not
capable of such subtlety and the actions
of each of the three critical blocks must
be carefully defined to avoid unstable
conditions. The most important
problematic situations to be accounted
for may be summarised as follows:

a) Sidelobes spread out in space as they
are forced down in level. In
particular, the iteration process may
be 'confused’ if the change is 50 great

~ that the outer sidelobes move outside
the visible angular region and the
total number of sidelobes changes.
This problem is easily overcome by
taking small steps and reducing
sidelobes by just a few dB at each
stage rather than aiming at the target
requirement immediately.

b) Diffraction secondaries and periodicity in the pattern due to regular element spacing cannot
be controlled by shading and any attempt to do so will lead to instability. This is overcome
by calculating the period along all lines of symmetry in angular space and restricting the
pattern definition to locations within one half-period of the main beam direction.

Meaningless results will be produced if the pattern definition includes conflicting
requirements. If a requirement for a null, or other specific level in a particular direction, is
close to a sidelobe, even a sidelobe at the same bearing in © along a different line of

272

Proc. 1.O.A. Vol.17 Part 8 (1995)




Proceedings of the Institute of Acoustics

AUTOMATED TRANSDUCER ARRAY OPTIMISATION

symmetry in ¢, the sidelobe

1IN ARHAY

Y UAS-5QUAHES Flese &-ray Beompatierns Run: AZO1 should be dropped from the

SHAIHNEG 3 FAY Vo .

fom AT sk i ] pattern definition. This allows
wen Oct 909:13:28 1995 T .

T A [ \ | the null or specified level to

Spacng f iambdy : 0.500 23 H

take precedence.

Seleicbes/aB | 3600

Fezpcnse / dB

1aematry : h
A W .
Lindiorm tmport -4nt - fﬂ\ ) h| /‘\\ B d) Exact matChln Of the
,“‘I \ { ' .lr ! .

" Siccrng AR | M A computed beampatiern with
on orr ] 5 8 X C W & 50 the requirement is impossible
T Bearng 1 <49 due to rounding errors and
e options || Rum o other practical imperfections,
- and if a reasonable tolerance is

e —— 47 10 . T
sme ot | Savara | || E I — | not allowed in deciding that

- W Ghast d dag Wl W | g

convergence is complete it
never will be achieved.

Fie.d GUI implementation in IDL.

e) The accuracy with which the
angular locations of sidelobes, nulls and other points of interest are estimated must be small
compared with the width of the narrowest sidelobe in the pattern and with the change
occurring between stages in the iteration. If not, convergence will be impossible because the
algorithm will not be able to see the variation from one step to the next and will wander
aimlessly.

These points may be programmed as logical decisions, and once incorporated the algorithm is
easily implemented in almost any programming language. Figure 4 shows a graphical user
interface (GUI) developed in /DL, although such sophistication is not necessary for successful
employment of the method.

3. SOME EXAMPLES

A few unpretentious examples will serve to demonstrate the method. Each of these uses as its
basis a uniformly spaced line array of twelve omnidirectional elements. The objectives are firstly
to find a set of shading coefficients that give a uniform sidelobe level for the uncomplicated case
with A/2 spacing and then for a spacing of A, where diffraction secondaries and periodicity in
the pattern could present difficulties. The required sidelobe level was arbitrarily chosen to be
-36dB relative to the main beam. Having achieved this, nulls steered in specific directions will be
introduced, firstly at a bearing coinciding with an existing sidelobe and then in a direction where
there is already a null but aiming to broaden this null to a width comparable with the sidelobes.
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Table 3.  Shading coefficients for example algorithm applications and Chebychev

-36dB shading.

Element Fig.5 Fig.6 Fig.7 Fig.8 Chebychev
1/12 0.1590 0.1590 0.1297 0.0968 0.1590
2/11 0.2990 0.2990 0.2885 0.2440 0.2990
3/10 0.5034 0.5034 0.4995 0.4821 0.5034
4/9 0.717¢ 0.7179 0.6946 0.6721 0.7179
5/8 0.8974 0.8975 09144 0.8835 0.8975

6/7 1.0000 1.0000 1.0000 1.0000 1.0000

The results obtained are shown in Figures 5-8. Each of these figures shows (A) the uniformly
shaded beampattern, with crosses denoting the locations and levels of the sidelobes found at the
first pass through the algorithm, (B) the sequence of beampatterns obtained with the sidelobe
levels reduced by 2dB at each iteration and (C) the final beampattern with crosses denoting the
locations and levels used to form a pattern definition at the last pass of the algorithm. The
shading coefficients used to produce the final pattern in each example are listed in Table 3.
along with the coefficients for -36dB Chebychev shading.

The unshaded pattern has a beamwidth of 8.5°, a DI of 10.8dB and a sensitivity of 21.6dB
relative to a single transducer. In the first example, Figure 5, the sidelobes reduce smoothly in
2dB steps and converge in 13 iterations to the required pattern with -36dB sidelobes, a
beamwidth of 11.6°, a DI of 9.8dB and a sensitivity of 17.1dB. No constraint was put on the
symmetry of the beampattern, so it is symmetrical about the main beam and, as can be seen in
Table 3, the shading coefficients are real and symmetrical about the array centre. Furthermore,
these coefficients are within +0.04% of the Chebychev coefficients for a -36dB sidelobe level.

Figure 6 demonstrates that by restricting the control range to one period of the beampattern, as
indicated by the crosses, problems with periodicity and diffraction secondaries are avoided. In
this case the beamwidth starts at 4.2° and finishes at 5.8°, the diffraction lobes are ignored, and
this time the resulting coefficients are identical to Chebychev shading to 4 decimal places. The
DI's and sensitivities are, of course, the same as in the previous example.

It will be seen in Figure 5 that there is a sidelobe in the final pattern at a bearing of 49°. Figure 7
shows the result of including a requirement for a null at this location. The sidelobes reduce
slightly less smoothly than in the previous examples, but still converge in 13 iterations to a
uniform -36dB level with a null in the required position. The final pattern has a beamwidth of
11.8°, a DI of 9.7dB and a sensitivity of 17.0dB, so is essentially the same as that in Figure 5C.
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Fig.5 Initial pattern (A), iteration
sequence (B) and final pattem (C)
for 12 element array with A2
spacing and objective of uniform
-36dB sidelobes.
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Fig.6 Initial pattern (A), iteration
sequence (B) and final pattern (C)
for 12 element array with A
spacing and objective of uniform
-36dB sidelobes.
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It is also noted that all the coefficients are within £3.5% of Chebychev shading, except for the
outer two, which differ by 18%, so errors and tolerances in a practical array and beamformer
must be smaller than this to form such a null.

Finally, referring again to the pattern in Figure 5C, it will be seen that there is a null located at
42°, Obviously, a requirement for a zero at this bearing would have no effect on the final
pattern. The null can be broadened, however, by specifying a group of nulls spaced apart by
angles small compared with the width of a sidelobe in this region. For the example in Figure 8 a
group of five nulls was specified at 42°, 42°+2° and 42°+4°. This time it takes 15 iterations 1o
converge, but the result is again a pattern with a uniform -36dB sidelobe level and a broad null
in the desired position. The final pattern has a beamwidth of 12.2° a DI of 9.6dB and a
sensitivity of 16.6dB so, ence more, is not significantly degraded relative to the pattern in
Figure 5C, and the remarks above relating to the accuracy of the shading coefficients are equally
applicable.

4. IN CONCLUSION

This paper. has. described a.method for finding shading coefficients that can be applied to arrays
of arbitrary geometry to achieve any physically realisable set of requirements for the resulting
beampattein.. The..methodis. fully automatic .in:the sense that if the decisions .amd:parameters
distussed :in.Section.2, are: properly programmed: no:intervention by:the user is required.:Nor: is.
any.skill or.knowledge required: of the user beyond: defining a reasonable .specification. for:the
bearmpattern before: running the program.

The algorithm is -easily implemented as a computer program; either in conventional
programming ; languages or the more recent higher level. languages such. as Mathcad:
Mathematica and: IDL. The.examples were obtained with an IDL GUI: based implementation,
but the -algarithm has previously been programmed in both. BASIC: and--Mathcad. Gompared:
with earlier numerical optimisation approaches (see [2] or [3] for a brief review) this method is
not computer intensive and arrays of several hundreds of elements are easily handled by a
standard PC (Figures 5-8 each took about 20 seconds to produce on a 66Mhz 486 DX2
machine, including saving the graphics:as Postscript:files).

The:examples-given :here .do-not-tepresent iany: specific. beamforming: application, .and nor: do
they: show the most-complex: or most difficult situations that:can be: handled by the method.
They-areisimply intended-ta give:an idea:the sort ofiproblems that can bestackled using the:dzast~
squares:techrtiqus; and.to demonistrate: that.reasonable: solutionsi¢can: becabtained - quickly.-and.
easilyt.However; the procedure. doés not.always find -a useful answer,: ar-indeed :anyanswer; if
the:requirements-are mot:physically-realisable with the specified array geometry.-The algorithm.
cannot, for example, suppress diffraction secondary lobes if the element spacing is too wide..
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Nevertheless, like other CAD techniques, if it is used intelligently and with an understanding of
the behaviour of arrays and beamforming, the method provides an efficient tool for finding the
best possible shading for a particular array geometry given a set of beampattern requirements.
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