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1. INTRODUCTION

Exhaust mufflers, large exhaust stacks, and turbofan engines are common examples of ducted
noise. The most useful measure of the sound produced by these noise sources is the sound
power transmitted along the duct. Unlike acoustic pressure, sound power is a conserved quantity
that provides a single index of the source strength. Its measurement, however, is difficult and
must usually be inferred from a number of acoustic pressure measurements made, either inside
the duct, or in the radiated far-field. A fundamental difficulty with making power measurements
from in-duct pressure measurements is the presence of airflow. Munroe and Ingard [1.1] show
that the usual approach of deducing acoustic particle velocity from the pressure gradient is no
longer valid when the direction of flow and sound propagation differs. Under these conditions,
they show that the relationship between these quantities is non-unique.

Another approach, and the one explored in this paper, is to predict the relationship between the
sound power and pressure based upon an assumed mode amplitude distribution. This paper
investigates the relationship between pressure and power for a number of idealized source
distributions. Of particular interest here is the sensitivity of this relationship to the assumed
source distribution and, in particular, the effect of flow speed. For simplicity, the analysis will be
restricted to hard walled infinite ducts. It excludes (i), reflections from the open end (ii), the
effects on the propagation by the shear profile, including the duct wall boundary layer, (iii), cutoff
modes, (iv) measurement noise, for example, due to turbulence. The effect of these factors on
sound power measurement in flow-ducts is discussed extensively in a recent paper by Neisse

and Arnold [1.2].

2, MODAL SOUND TRANSMISSION
The infinite duct, and its associated co-ordinate system, is presented in Fig 1 below.
Error! Not a valid link.
Figure 1. Semi-infinite, hard walled unflanged circular duct with associated co-ordinate system
and continuous source distribution represented by the shaded region.

The in-duct sound field satisfies the homogeneous wave equation given by

=2
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where
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g
"8 is the convected derivative operator associated with the mean flow velocity
M.00) in the (x,y) system and c is the sound speed in the quiescent medium. The in-duct
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sound field can be expressed as the sum of modal components m=—ou=0 where (m,n) are
the usual circumferential and radial mode indices. Above its cutoff frequency, at a single
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frequency , a single incident mode of amplitude ##x is described by

Pl ¥)= e 0 [y e 2)

Equation (2) in Eqg. (1) gives

k = amm_Ma’ _'33
- 1‘M3 f", ﬂm=ﬁ]1"[’fmfk)z(l_mxz)_ (3a,b)

where k., are a set of eigenvalues that are characteristic of the duct cross section such that the

2, .2
corresponding mode shape functions ¥,,, defined by (v.l_'{'xmx J\Pmuhf)= 0, also satisfy the
duct wall boundary conditions. The sign convention adopted here is such that M, > 0 represents
sound propagation in the direction of the flow (duct exhaust) while M, < 0 represents propagating

waves in the opposite direction to the flow (duct inlet). The parameter «, which we shall call the
cut-on ratio, takes values between ==0 precisely at the modal cutoff frequency

i
= - 27 .
@ = mm—’fm""ulzl“ Mx]r , and tends to a=1 as @{® —>® corresponding to modes well
above cuton.

3. _ RATIO OF SOUND POWER TO MEAN SQUARE PRESSURE
AVERAGE OVER A DUCT CROSS SECTION

In this paper we are concerned with the behaviour of the non-dimensional quantity Bs, defined by

Eq. (4) below, from which the total transmitted sound power W may be deduced from
measurements of the mean squared pressure averaged over a duct cross section,

(7). -1 mp'as
5 5

),

_ P
W=
P (4)

where pq is the mean density. We shall adopt the generalized definition of sound power flow in a
uniform axial mean flow [2.1] given by

W = %J'lpnchuxu;+Mxpp‘!,onc+ﬁ+M§)pu;ld3' o
&

where u, denotes axial particle velocity. The time averaged (mean) squared pressure at a
position (y,x) in the duct in a narrow frequency band may written as
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Ply.x)- %E{%am’l‘m(}')em“”r }

(6)
where E{} denotes the expectation. For incoherent excitation we treat the mode amplitudes as

uncorrelated random variables so that £ mxam‘x'} =0 for [mn] # [m’,n'], which in Eq. (6) leads to

Ply)=1 mz:g E{Iczm |2} W) (7)

This situation is appropriate to many random broadband excitation mechanisms such as
unsteady combustion and the turbulence-airfoil interaction responsible for broadband noise
generation by fans. Averaging Eq. (6) in this way removes the dependence on x, suggesting that
the mean squared pressure in the duct is axi-symmetric and also independent of the distance x
along the duct. Note that the presence of reflections at the open end (which are neglected in this
investigation) will introduce some axial pressure variation.

The mean squared pressure is now averaged over a duct cross-section S. Making use of the

S wd (v)ds =1
normalization property 5 , Eq. (7) becomes

(%)

This result could have been derived using the orthogonality property of the mode shape
functions. Equation (8) is therefore completely general and is valid even for correlated mode
amplitudes.

The modal solution of Egs (2) and (3), together with the axial particle velocity obtained from the
linearised momentum equation, substituted in (5), leads to following generalized definition of the
time-averaged acoustic sound power carried by a single mode above cutoff in an axial uniform
mean flow [2.1]

2

7o Te Tl o 0i]
.y s 2,(76‘ [1 - amnMx)z y (9)

where § is the duct cross-sectional area and the expectation has been dropped for brevity.

Comparison between Egs. (3a) and (11) makes explicit that the signs of « relate to the direction

of energy transmission and not the direction of phase velocities. Equations (8) and (11) in (4)

give the following general expression for g as

|ﬂm;u i R

2 [1— OmeMx)

Be = ﬁ‘Mﬂ =
gkm[’

4, SOURCE MODELS

(10)
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4.1. UNCORRELATED SOURCES OF ARBITRARY SPATIAL AND
TEMPORAL ORDER UNIFORMLY DISTRIBUTED OVER A DUCT
CROSS-SECTION

In this section we derive the relationship between the mode amplitudes excited in an infinite hard
walled duct containing an axial mean flow and the cut-on ratio « for incoherent sources of
arbitrary spatial and temporal order, uniformly distributed over a duct cross-section. The
inhomogeneous wave equation for sound in a uniform flow is

Common forms of g are:

g =04 I = volume acceleration source distribution)
q= 0 &9- (= volume velocity)
Df
4
=0y E—?— (5= volume displacement)
Df
g=%F (F = applied force distribution) (12)

A generalization of these possibilities is

_(B) kA
? Df axiax‘}-.... 4. (13)

which represents a source distribution of temporal order v and spatial order u. In what follows the
source distribution is limited to axial components% of g;;. In this case

ik

Consider a single mode excited in a semi-infinite duct by a source distribution confined to a
single axial location. Under these circumstances Morfey [2.1] shows that for a single mode the
spatial differentials in Eq. (13) are equivalent to

[‘ %]#_"(" i) (15)

Similarly, the temporal differential in Eq. (13) may be replaced by
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Combining Egs. (13) — (16) and following the approach described in, for example, Ref [4.1] leads
t.u-vll

to the following general expression for the mode amplitude excited in a semi-infinite duct
by an incoherent source distribution of spatial order  and temporal order v, uniformly distributed
over a duct cross section,

A ot
M ~ Cy l"amuMz
1- b} 1- 1} (17)
Under this indexing convention the source distributions of Eq. (17) take the index pairs:

U‘#Vj: [U:U:' for volume acceleration sources, (,f-f,V)= [UJ) for volume velocity (monopole)
sources, (%)= [0.2) for volume displacement sources, and (%)= (L0} for axial dipole sources.
For sources of non-zero spatial order, u > 0, the mode amplitudes are non-monotonic functions
of the cut-on ratio a, dropping to zero at @mx= ;. This condition occurs at the zero-Mach

number cutoff frequency ® =¢%uws . Equation (17) in (10) gives the following expression for the
non-dimensional ratio of incident sound power and mean square pressure averaged over a duct
cross section,

b =

(1 MQFZ 1_ Ol M JQ[V—IJ[M - G-'MJE'E

}{;L.znv] -
C{mxﬁ - %aMx )2” [Mx - a.wsz"‘

(18)

4.2. EQUAL ENERGY PER MODE, AND EQUAL ENERGY DENSITY PER
MODE

Two alternative source models are the assumption that all cut-on modes carry equal power, and
that all cut-on modes produce equal energy density (total acoustic energy per unit volume).
Evidence to support the latter as being the most appropriate model for fan noise in ventilation

ducts is presented in Ref [4.2]. For ‘equal energy per mode’ we set in Eq. (9) HTm =% The
. {ee)
resulting mode amplitude distribution Iam is,
v
[1 - ‘IMMMWJ
232
- ) (19)

For the ‘equal energy density per mode’ source model we note the following generalized

2
ke[ - 200005 anke

definition of the volume-averaged energy density Hm:wm! SC@M , Where cgmp denotes the

modal axial group velocity defined by € g = da/ akx. Performing the differentiation on Eq. (3a)
2 .

yields € g/ = (1' M )am /- “MMxJ. The resulting expression for s is given in Eq. (20a),

[
and the mode amplitude distribution ,am I obtained by setting [l =11 is given by Eq. (20b),
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m, |ﬂm|2 - 27) e - mﬁt‘;(l = G M)

227 1= Oy M RyvE) (20a,b)

Comparison of Egs. (19) and (20b) with (18) shows that, in general, the source models based on
assumptions about constancy of modal energy are not members of the general family of multi-
pole source distributions of Eq. (18) parameterised on (u,v). The single exception occurs for M, =
0. At zero flow speed the ‘equal energy per mode’ model, the ‘equal energy density per mode’
model, and both the incoherent uniform distribution of monopoles and axial dipole models all

1)

2 ol
collapse to the single source family, I“mnl x“wi# . As discussed in Ref [4.1], values of the
index x = 3/2 and u = 2 correspond, respectively, to equal energy per mode and a uniform
distribution of incoherent monopoles. Setting u = 1 corresponds, simultaneously, to a uniform
distribution of incoherent axial dipoles and equal energy density per mode. This is because, even
though the modal sound power is proportional to «, and therefore tends to zero as cutoff is
approached, the speed with which this diminishing energy is transmitted along the duct, also
lessens at precisely the same rate, equal to the zero-flow group velocity a. Thus in the absence
of flow, an axial dipole distribution is equivalent to the assumption of constant modal energy
density.

Equations (19) and (20b) in Eqg. (10) give the following expressions for g for the case of equal
energy per mode and equal energy density per mode

- wed] ﬁ_MEFE%n&_%aMrj—l
oo sl [ A

Can R (21,22)

where N = N(ka,M,) is the total number of propagating modes. Equations (18) — (22) are likely to
be inaccurate at the low frequencies of ka < 0.5 where the presence of reflections from the open
end can no longer be neglected. The present analysis will be restricted to frequencies above this.

5. COMPUTED Bs VERSUS FREQUENCY

The eigenvalues for a hard walled cylindrical duct of radius « are given by
— '.f
Ko = Jum ' O (23)

Here, Ja&m is the nth stationary value of the Bessel function of order m. Equations (18), (21) and
(22) were used to compute Bg as a function of non-dimensional frequency ka between 1 and 250
in a circular duct. Predictions were obtained for the axial dipole source distribution, the monopole
source distribution, and the assumption of equal energy per mode and equal energy density per
mode. The results for the representative Mach numbers of M, =0, M, =+0.1 and M, =+ 0.3 are

plotted in Figs 2 - 5. The predictions are normalized on the plane wave result, Bs = [1 + M )
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Figure 2. The ratio Bg of transmitted sound power to mean squared pressure averaged over a
duct cross-section evaluated for incoherent axial dipole sources uniformly distributed over a duct
cross-section for different axial Mach numbers.
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Figure 3. The ratio Bg of transmitted sound power to mean squared pressure averaged over a
duct cross-section evaluated for incoherent Monopole sources uniformly distributed over a duct
cross-section for different axial Mach numbers.
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Figure 4. The ratio Bg of transmitted sound power to mean squared pressure averaged over a
duct cross-section evaluated under the assumption of ‘equal energy_per mode’ for different axial
Mach numbers.
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Figure 5. The ratio Bg of transmitted sound power to mean squared pressure averaged over a
duct cross-section evaluated under the assumption of ‘equal energy_density per mode’ for
different axial Mach numbers.
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These results suggest that the frequency variability of 8g for some source distributions are more
greatly affected by flow-speed than others. The Bg-frequency-variability is observed to increase
with increasing flow speed in an exhaust duct but diminish with increasing flow speed in a duct
inlet. The axial dipole distribution is most sensitive to flow-speed, as clearly shown in Fig 2. At
zero flow speed g remains within a narrow range of values over the entire frequency range.

Upon the introduction of the small flow speed of My =10.1 g4 drops close to zero at the cutoff
frequencies. The severity of this ‘drop out’ phenomenon worsens considerably with increasing

M,. For M, =203 typical of the flow speeds in turbofan engine inlets and exhausts, fluctuations
in Bs are so rapid, particularly at high frequencies where the modal density is very high, its
practical application to determine sound power from acoustic pressure measurements is
susceptible to large error. This cause of this behaviour is readily explained by the sensitivity of
the mode amplitudes to small values of M, at frequencies very close to cutoff. For My <<l and o
<<1in Eq. (18),

o)

m (L By f g %, :
Lu'l;'v](ujl (My <<l gy <<l (24)

indicating that for 4 > 0 the mode amplitudes at cutoff are finite only for A, precisely equal to
zero. For non-zero Mach numbers the amplitudes of modes close to cutoff tend to infinity leading
to the large fluctuations in Sg observed in Fig 2 for u = 1. For u = 0, however, Eq. (24) predicts
that the behavior of the mode amplitudes close to cutoff are not affected by flow speed. This is
verified in Fig 3 where fluctuations in Sg are not strongly influenced by M,. The simulation

results of Figs 2 — 6 may be summarized as:

e  The relationship between sound power flow and the mean square pressure in a hard walled,
infinite duct generally appears as a highly irregular function of frequency. Frequency
irregularity arises from the behaviour of individual modes at frequencies close to their cutoff
frequencies.

. The frequency irregularity of 8g for sources of non-zero spatial-order (e.g. dipoles) is more
greatly affected by flow speed than sources of finite temporal order (e.g., monopole
sources). This is due to the sensitivity to flow of the mode amplitudes close to cutoff

. Frequency irregularity is appreciably less for source models based on constancy of modal
energy rather sources of prescribed multi-pole order

. Frequency variability increases with increasing axial Mach number in the duct exhaust, but
lessens with increasing Mach number in the duct intake

. A well-defined high-ka asymptote only exists in some cases. We will show in Sec. VI that

these are for the source distributions of equal energy per mode, equal energy density per
mode at all flow speeds, and for the axial dipole distribution at zero flow speed.

6. HIGH-ka LIMITING BEHAVIOUR

At suitably high ka, the discrete summation of modes in Eq. (10) may be approximated by the
integration over a continuum of modes,
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Here n(«) is the normalized modal density function defined by

)_ N(ﬂ: +5c£:l— N(af”
Nda |].'im.§c:—}lJ,

e [aledde=1

(26)

where N(a) is the number of modes with ‘o’ values of between 0 and « . The high-ka asymptotic

density function n, expressed in terms of a , is given by ”(ﬁ)= 2& [4.1]. This result in Eq. (25)
evaluated for the mode amplitude distribution functions of Egs. (19) and (20b) give

sh-u2Jha65" 2058 3l -36,)
-1 eed) _ L el il ul z
,&5"":’=%(1-Mx+-§-M§] , ﬁg M, -3 , (ka—&mj 27)
Evaluating Egs. (27) for M, = 0 gives

alee] -1 , gtmj -3 , (b, =0, ka—sco) (28a,b)

Equation (28a) indicates that, for zero flow, the equal power per mode assumption is equivalent
to a hemi-diffuse field in which acoustic energy arrives at the open end from all solid angles
equally. Equation (28b) is identical to that predicted for the axial dipole distribution in zero-flow
(Fig 2) but differs when a flow is introduced. As discussed previously, the axial dipole and equal
energy density per mode model are equivalent source models at zero flow-speed.

The corresponding high-ka expression of Eq. (18) for the multipole source distributions, however,
generally fails to converge for most (1,v) combinations. Whilst the numerator of Eq. (18) always
converges, and hence the multi-mode transmitted sound power remains theoretically finite, the
denominator, which is proportional to mean square pressure, does not. This function diverges
slowly to infinity as

1
tim [ 271 - abd, P¥ (M, - @) de — -2062% lim [Ine ]
s—;US &+ (29)

Equation (29) explains the tendency observed in Figs 2 and 3, for Bg to approach zero with
increasing ka, to the behaviour of modes close to cutoff. The slow logarithmic divergence of this
integral indicates that any dissipation present in the duct, for which near-cutoff modes are most
affected, will ensure its convergence. The range of parameters in Eq. (30) for which convergence
is obtained are > 0 and » =0 | for any value of v. Allowing the Mach number to go to zero

offsets the logarithmic growth in &. For example, putting v =0 and M =0 in Eq. (26) for the
amplitude distribution of Eq. (18) gives

[ow) | 24 (M, =0, v=0, ka— o)

* 2,u+1’ , (30)
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Physically important cases of Eq. (30) are axial dipoles, ﬁED"H =23 and axial quadrupoles,

INTERNAL MEMO

A =45,

6.1 — SOUND POWER VARIATION WITH MACH NUMBER

For sources that are not aerodynamic in origin, in the sense that their source strengths are not
dependent upon the existence of a row[1], the present approach may be used to obtain closed
form expressions for the high-ka asymptotic sound power variation with M,. These results are
also useful, not only as a means of comparing the Bg - sensitivity of the various source
distributions to flow, but also for allowing free-field sound power calculations involving
aerodynamic sources to be corrected to include duct convection effects. Writing the high-ka
behaviour of the mode amplitudes as continuous functions of « and M, This result follows from
Eq. (3b) where the effect of a mean flow is to reduce the cutoff frequencies by the reciprocal of
this factor. No general clos ed-form solution exists to Eq. (26) that is valid for all (v, u). However,

solutions for the six main source distributions of interest here are given by

a2 - a2 T faed - o3 w2 w20, - - M3+ 26, (ev)=(00)

L+, (e v)=(00)
p-ae2) (12v)=(01)
b~ a2 - e, + 400 (v)=02)
[1 - M,? ]-1 ecpual enerey per mode
-3(La7t 4 M2 4 P - 0, ) ecqual energy denstiypermode

31)

Equations (31) are plotted in Fig 6
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Figure 6. Multi-mode, high-ka Mach number dependence of the sound power flow for the source
distributions of equal energy per mode, equal energy density per mode, an incoherent
distribution of volume displacement sources, volume velocity sources, volume acceleration
sources and axial dipole sources uniformly distributed over a duct cross section.

Generally, the power is predicted to increase with increasing Mach number in the duct exhaust,
but decrease with increasing Mach number in the duct inlet. Exceptions are volume displacement
sources that have a minimum value of -0.05dB at M, = +0.2, and axial dipoles source whose

minimum value is about —2dB at M, = -0.39. Other interesting findings are that the equal energy

per mode model and the volume acceleration source model are predicted to have identical high-
ka Mach number dependence. Furthermore, this dependence is an even function of M,

suggesting that their sound power outputs are transmitted upstream and downstream equally.
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9 . . . .
% Non-axial components are equivalent to sources of lower order, in the modal formulation

TFan noise is a common example of an aerodynamic source. The Mach number dependence of the
transmitted sound power for these sources, particularly at low flow speeds, is dominated by its influence on
the source strength. By comparison, the convection effects discussed here, which are a result of modifies

modal propagation, are generally much weaker.

file:///Fffiles/Pages/papers/P.F.Joseph.80.htm 13/13






