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1. INTRODUCTION

The Meyer Sound Multi Acoustic Prediction Program (MAPPm‘) is

an ongoing research program to develop and distribute sophisticated

software for accurately modeling the acoustic interaction of loudspeak-

ere.
Currently, we use a far-field model of acoustic interaction, based

on the empirically measured far—field polar patterns of loudspeakers.

Using a rotation device in an anechoic chamber, we position the loud-

speakers every degree both horizontally and vertically, for a total of

360* 180 = 64, 800 measurement locations. We use a multiple timescale

FFT based measurement system, which gives us at least % octave res-

olution in the audio spectrum 20Hz —> 20kHz. The resulting data sets

are large, approximately 1.5 a: 109 bytes, (1.5 gigabytes) for each loud-

speaker. For this reason, we have chosen a distributed client-server ap-

proach to software development. A Java based client program resides

on a personal computer. This client takes care of the visualization

and display of the acoustic information. The client program connects

through the Internet to our computational servers based in Berkeley,

California, which handle the numeric model computations.

In order to test our model and measurement facilities, we have con-

structed an ideal (in the classical physics sense) model loudspeaker,

which consists of a well—behaved 3 inch cone woofer placed on the sur-

face of a hard 10 inch radius sphere. Because of the simple geometry, it

is possible to derive a solution to the complex pressure radiated by this

loudspeaker using a. simple recurrence relation and the sum of Spheri-

cal Hankel functions. Also, this geometry has the advantage of being

rotationally symmetric, allowing for a great reduction in the number

of empirical data. points needed.

We present both the theoretical results and the empirically measured

data for this spherical loudspeaker model, and we use these results to

discuss the accuracy of the far-field model.
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2. MATHEMATICAL FORMULATION OF A SPHERICAL LOU'DSPEAKER

We start with the scalar wave equation that governs the acoustic
propagation of small pressure disturbances in air,

V2P(xa t) _

 

33:2
where x is a point in R3, p(x, t) is a linear acoustic pressure distur-
bance field, and t is time. If we assume time-harmonic phenomena, (no
transient acoustic signals, only periodic vibrations)

p(x, t) = Rsallflxk‘w‘}

we get the Helmholtz equation

V2fi(x) + k2 p(x) = o

where f is frequency, 1: is the wavenumber, and A is wavelength, /\ f =
c,c is the speed of sound in air, k = 2—}, k = 13 is the (complex)
time-harmonic acoustic pressure disturbance field, where ‘ denotes a
complex numberd+i *b, a,b E R and 'i = \/—_1.

Since we want the solution to a radiation of a circular piston set on
the surface of a sphere, we will use thespherical coordinates r,0,¢,
where r is the radial direction, 0 is the latitude coordinate ranging
from 0 at the north pole to 1r at the south pole (note this is a slightly
different definition than in usual geography), and o is the longitudinal
coordinate ranging fiom 0 -. 21r. V
The Laplacian operator V2 in these spherical coordinates is

2_i3 3 1_£(- 3) __1iV 3% (r26?)+rasin2(0)80 “(9)09 +r23m2(9)8¢2
It is shown in [3] that a solution to the Helmholtz equation in three

dimensions can take the following form. Note that our problem has
rotational symmetry in the longitudinal (1: direction.
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From this equation, we can derive a, series solution for the pressure
fi‘om a. circular piston set in the side of a sphere:

w, a) = i Am meow) we)
m=0

P"l are Legendre functions, hm are spherical Hankel functions.

The spherical Hankel functions are defined as

M5) = mg) + we)

M5) = “I z .—_<"‘+ 3)! as

  

zé 3:0 s!(m-s)! 25

inc) fling) «mew—“55(5)
(Note, that spherical Hankel functions are related to the Bessel func-

tions of fractional order. The spherical Bessel function of the first kind

is jn(z) = VEJn+%(z), and the spherical Bessel function of the second

kind 7,1,,(2) = EYH+% (z), [1, page 437]. Note that in Morse’s notation

he uses n..,. = yn.)

The Legendre function is defined as [2]:

19mm = LEI—(12 — mm, n = 0,1,2...
01'

("I/2) (—1)‘(2m - 2.9)!
Pm(z) = gWrmhy 130(3) = 11P1($) = I

where [m/2] means the largest integer g

" _ pCUm 45,”
Am — Em 6

Our speaker piston is situated at the north pole of a sphere of radius

a. If we define the vibration on our sphere to be

 

U(9)‘{o, if00<057r

Um = éuo [Pm_1(005 9o) — Pm+1(C°5 '90)]

and for m. = 0,P_1 = l.
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The following recurrence equations define the other parameters in

the modeli

(2m + us... sin 6... = (m + 1)j...+1 (1w) — min—Aka) 1
(2m + 1)Bmcos 6... = mn..._1(ku) — (m + 1)’rlm+1(ka) ‘

_ —1 (m + llijUW) “ "Um—MW)
6m — tan ———————-—-—-——-

mn..._1(ka) — (m + 1)n.,,.+1(lca)

From these equations , we can derive a numerical method to solve for

the sound pressure from a spherical loudspeaker at any point in space. ‘

For the physical constants. as average values of the speed of sound

in normal temperature and pressure ranges, the speed of sound c =

343% and ambient density of air p = 1.23% we used.

3. COMPARISON OF THE THEORETICAL PREDICTIONS AND

EMPIRICALLY MEASURED DATA

Figure 1. shows a. comparison between the theoretical predictions

derived in the previous section and actual data measured in an ane- I

choic chamber. We built a model loudspeaker by mounting a standard

3 inch cone woofer flush on the surface of a. hard plastic sphere

a 10 inch radius. This model loudspeaker was then mounted on a’16-

tation device in an anechoic chamber. A multi-timescale FFT based

measurement system was used in conjunction with a. signal consisting

of pink noise. The system gives approximately l/24th octave resolu-

tion to 20kHz. The spherical loudspeaker was rotated and measured

every degree, for a total of 360 measurements. The magnitude of the

measured complex pressure experimental data is plotted in red, u a

continuous line for easy identification. The theoretical prediction was

also calculated every degree, and the magnitude of the complex pres

sure is plotted as a continuous blue line. The radius of the piston for

the theoretical prediction was chosen to be 1.25 inches, see the discus-

sion below for the reasons. The scale of the polar pattern axis is linear,

and the radial aids scale ranges between 1 and zero. Each individual

polar pattern trace is normalized, with the largest magnitude equal to

1.

In general, the theoretical predictions match the experimental re-

sults very closely. In the theoretical model, the piston in the sphere

is assumed to be convex. while the experimental setup uses the stan-

dard inverted. cone loudspeaker. This loudspeaker is most likely not

radiating exactly equally for the range of frequencies studied. In fact,
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if the piston radius is chosen as 1.5 inches'(which assumes the sus
pension contributes to the sound pressure radiated), the agreement
between the low frequency theoretical predictions and the measured
data. is slightly better,- While at the high frequencies it is slightly worse.
Conversely, if the radius is chosen as 1 inch, the theoretical prediction
matches slightly better at the high frequencies, but slightly worse at
the low frequencies. At the higher frequencies, the suspension in prob-
ably decoupled from the radiating cone, so a smaller area is vibrating.
The diiferences in the frequency range 300-600 Hz might be caused
by reflection and diffraction OR of the rotation machinery. Since this
machinery was designed to rotate a loudspeaker up to 2000 lbs. in full
three-dimensional rotation, it is not as small as ideally would be the
case.

4. A FAR—FIELD MODEL OF LOUDSPEAKER INTERACTION

We define the far—field polar pattern of a loudspeaker to be the com-
plex pressure p“ measured on the surface of a sphere of radius r; where
1'; >>) a, where a is the characteristic length scale of the loudspeaker
(or radius in the case of a spherical loudspeaker). For theoretical pre-
dictions, 13°“ can be derived from the limit as rf -» on. For empirical
measurements, n is the largest practical distance based on the size of
the anechoic chamber being used, signal to noise ratio, etc.

#ofspeakus A 1 II:

a... = paw) Ee' ’9

where 173 is the distance from each loudspeaker to the position being
calculated, and 135°(9, ()5) is the complex polar patter of each individual
loudspeaker.

Note that this model does not model the acoustic waves that scatter
ad of the other loudspeakers. At first glance this would appear to be
a serious deficiency. However, modern high-powered professional loud-
speakers are usually desigied to be highly directional, and thus the
scattered field is very small compared to the direct field. We find the
results of this far field model of interaction to be surprisingly accurate
when used with high resolution empirically measured polar patterns.
Due to the simplicity ofthe model, the model is only as accurate as the
polar patterns used. If phase data is ignored, or if a coarse firequency
and spatial measurement grid is used, the results will be inaccurate. Es-
sentially, we are using a simple theoretical model with high-resolution
empirical data to provide accurate results in an interactive software
environment. Currently, advanced numerical models such as boundary
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integral or finite element methods require too much computation for__

interactive design software. Since computational power is rapidly in-

creasing, with no end in sight, soon advanced numerical models could

be utilized that would capture the scattering efiects of multiple loud-

speakers.

During the presentation of this paper, we will demonstrate our cur-

rent client-server based MAPP(“‘) farhfield loudspeaker interaction

software. We will show the prediction of two spherical loudspeakers

placed in a parallel array, as well as empirical results from two iden-

tical spherical loudspeakers measured in our anechoic chamber. Time

permitting, we will show results from measured loudspeakers, in real-

istic arrays.
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FIGURE 1. Polar patterns of a 3 inch woofer set in a. 10
inch radius spherical enclosure. The scale is linear, and

shows the magnitude of the complex pressure. The blue
line shows the theoretical predict
the measured data.
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