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1 INTRODUCTION 

Surveys to monitor important underwater areas have been revolutionised in the sense of area 
coverage and resolution due to growing access of authorities to autonomous underwater vehicles 
(AUVs) equipped with synthetic aperture sonar (SAS) sensors. One promising methodology is change 
detection on these high quality sensor data. For image-based change detection, SAS images of the 
same scene recorded at different times are co-registered and changes, such as newly deployed 
objects, can be detected. Image-based change detection has a clear advantage for compatible 
partner datasets compared to conventional detection performed on individual images. Various factors 
determine whether a partner dataset is compatible for processing, and thus successful image based 
change detection is possible. These factors include for example differences in planning parameters 
such as course differences, AUV track differences, temporal baseline, or different sonar systems. In 
operational situations, change detection with sonar data from different nations, and thus different 
systems may prove beneficial. There is a wide range of possible variations of different systems. For 
example, different AUVs equipped with different SAS systems using various processing chains can 
be employed for acquisition of SAS imagery. In order to identify a compatible partner dataset, knowing 
the limits for valid planning parameters is necessary. For interoperable operations it is essential to 
evaluate whether registration with SAS imagery from different systems is without loss or even possible 
at all. 
In the past decade extensive research on image-based change detection for SAS imagery has 
demonstrated the potential of the method. First experiments with incoherent change detection for 
SAS were presented in 1,2,3. In 4, among others, a thorough analysis on coherent and incoherent 
change detection was published.  In this work incoherent change detection has shown to be more 
robust against environmental conditions than coherent change detection. In 5 incoherent change 
detection was also shown to be very robust to challenging environmental conditions.  
In this paper Section 2 briefly describes the automated processing chain and the relevant parameters 
that play an important role. In Section 3 image data from different systems are registered and the 
results are presented. The image data used was recorded in a joint measurement campaign of 
WTD 71 and ATLAS ELEKTRONIK GmbH using the AUVs SeaOtter and SeaCat with the sonar 
sensors Vision SAS Mk1 and Vision SAS Mk2, respectively. By operating both of these systems, 
different frequencies, processing chains, antennas and vehicles can be analysed in the context of 
interoperable change detection. Exemplary results for various configurations are also presented in 
this section. To investigate the relationship between quality metrics such as the achievable degree of 
correlation and planning parameters such as the course difference, an empirical study for all available 
partner datasets is carried out in Section 4. Based on these results, the dependency of change 
detection success rate as a function of planning parameters is statistically evaluated. The aim of this 
paper is to demonstrate the interoperability of image-based change detection and to derive the limits 
of valid planning parameters for successful change detection.  
 
 
 
 
 
 



Proceedings of the Institute of Acoustics 
 
 

Vol. 45. Pt.1 2023 

 

2 IMAGE BASED CHANGE DETECTION  

2.1 Incoherent change detection  

In this paper the SAS imagery for change detection is processed without phase information, i.e. 
incoherent change detection is considered. The algorithmic steps are implemented in an automatic 
processing chain with five main modules as shown in Figure 1. The five individual steps are (1) pre-
processing, (2) image size adjustment, (3) registration, (4) difference image generation, and (5) object 
detection. The pre-processing includes a median image normaliser and an optional filter. The image 
size adjustment selects the valid areas of the image, resamples the image pairs to the same pixel 
size, and performs zero padding to ensure equal image size at the input of the image registration.  
Image registration is subdivided into global and fine registration for computational reasons. Global 
registration first determines a rigid rotational and translational morphing of the complete image by 
correlating the rotated base image with the partner image after which fine registration determines a 

patch-wise morphing field based on local 2D correlation. The size of these patches is 64 × 64 pixels 
and the overlap is 8 pixels in each direction. The resulting morphing field is then applied to the base 
image, which then geographically matches the partner image. From the co-registered pair a difference 
image is created using the difference operator (in dB), which is typically much more smooth than the 
individual images. The idea is that only changes appear in this difference image, as long as the 
registration is sufficiently accurate. Areas resulting from the prior zero padding are removed in the 
difference image. As a last processing step, an object detector based on template matching is applied 
directly to the difference image. The processing steps shown lead to the difference images and the 
corresponding resulting detections as output. Further details on these steps can be found in 5. 
 

  
Figure 1: Block diagram for the incoherent change detection processing chain. 

2.2 Database parameters 

In order to select partner missions and partner legs automatically, each mission and each leg is stored 
in a database. Before a change detection job is started, suitable partners can be identified, based on 
a database query. This database contains information about each leg like the individual start time, 
course, depth, altitude, ranges, survey area and mission related information like the centre frequency, 
and sensor type. Partner information of each partner leg that has an overlap area to another leg is 
stored in a separate partner table. Here information like time differences, altitude differences, or 
overlap quantities can be found. Two related features that are intuitively important to determine 
suitable partners are overlap and leg displacement. In order to capture these two features in clear 
metrics, the parameters line piece average distance and overlap percentage are introduced. The 

parameter 𝑑 (line piece average distance) gives information about the distance between two partner 
legs. It is calculated by 

𝑑 =
1

2
( min

𝑛∈{1,2}
‖𝑑𝑛‖+ min

𝑛∈{3,4}
‖𝑑𝑛‖). (1) 

The distances 𝑑1, 𝑑2, 𝑑3  and  𝑑4 are calculated as depicted in Figure 2. In addition to this parameter, 

the line piece minimum distance  𝑑min is given by 

𝑑min = min
𝑛∈{1,…,4}

‖𝑑𝑛‖. (2) 
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The overlap percentage  𝑜   is calculated with respect to the union surface of the base and the partner 
leg. Additionally two measures of overlap are calculated. Overlap to base 𝑜b  describes the overlap 

percentage in relation to the image area of the base leg and overlap to partner 𝑜b describes the 
overlap percentage in relation to the image area of the partner leg.  

 
Figure 2: Sketch of the distances between two legs. 

2.3 Quality parameters 

During the registration of two images, certain quality measures are determined. In the global 
registration step, a global correlation measure is determined by correlating the two partner images. 
The base image is rotated in order to achieve the maximum global correlation. During the fine 
correlation, a median fine correlation measure is calculated. This measure is the median value of the 
correlation values of all registered patches. In this step also a spikiness measure is calculated by 

𝜉𝑖,𝑗 = Δ𝑥𝑖,𝑗 − median(Δ𝑥𝑖−1,𝑗, Δ𝑥𝑖+1,𝑗, Δ𝑥𝑖,𝑗−1, Δ𝑥𝑖,𝑗+1) (3) 

𝛾𝑖,𝑗  = Δ𝑦𝑖,𝑗 − median(Δ𝑦𝑖−1,𝑗 , Δ𝑦𝑖+1,𝑗 , Δ𝑦𝑖,𝑗−1, Δ𝑦𝑖,𝑗+1) (4) 

with the shifts of each registered patch in along-track direction Δ𝑥𝑖,𝑗 and in across-track direction Δ𝑦𝑖,𝑗. 

The matrices Δ𝐗 = Δ𝑥𝑖,𝑗|𝑖=1,…,𝑁𝑥,𝑗 = 1,…,𝑁𝑦
 and Δ𝐘 = Δ𝑦𝑖,𝑗|𝑖=1,…,𝑁𝑥,𝑗 = 1,…,𝑁𝑦

   are also called morphing field. 

The index 𝑖 = 1, … , 𝑁𝑥 is the along-track pixel index and 𝑗 = 1, … , 𝑁𝑦  is the across-track pixel index. 

𝑁𝑥 and 𝑁𝑦 describe the size of the morphing fields. The morphing error rates are calculated by 

𝜀𝑥  =
1

𝑁𝑥𝑁𝑦

∑ 1|𝜉𝑖,𝑗|>2

𝑖,𝑗

   and   𝜀𝑦  =
1

𝑁𝑥𝑁𝑦

∑ 1|𝛾𝑖,𝑗|>2

𝑖,𝑗

. (5) 

The mean morphing error rate for along- and across-track is given by 𝜀 = (𝜀𝑥 + 𝜀𝑦)/2 . Among others, 

these quality measures are used to identify successful image registration.  

In addition to the registration quality metrics, the false alarm reduction ΔFA is calculated. Therefore, 
the number of detections in the difference image are compared to those in the source image (see 
processing step 5). The difference in number of detections is the false alarm reduction. If the false 
alarms indeed show a significant reduction, it means that change detection was successful and 
achieved its ultimate goal. 
 

3 EXEMPLARY RESULTS FOR DIFFERENT SYSTEMS 

In our study, we registered SAS imagery from different systems. Exemplary results show the 
registered images listed in Table 1. These examples contain images from different processing chains 
(ATLAS SAS Processing or WTD71 SAS Processing), centre frequencies (MF, HF, and VHF), SAS 
systems (Vision Mk1 and Vision Mk2) and vehicles (ATLAS SeaOtter and ATLAS SeaCat). The centre 
frequencies for HF and VHF correspond to twice and four times the MF centre frequency, respectively. 
Besides the system configurations, also the quality factors median fine correlation and mean error 
rate are listed. The “Proc” column lists which processing chain has been used to generate the SAS 
imagery. 
The examples in Figure 3 to Figure 7 show that in principle incoherent change detection can be 
applied to SAS imagery, generated with different antennas, different processing chains, different 
vehicles and large time differences of approximately 3.5 years. The dynamic colour range of each 
image is 30 dB. However, Example 5 (Figure 7) does not guarantee success in general for such a 
time difference. Other influencing variables are the geographical position and the associated 
environmental parameters such as current, weather, water depth, and bottom type. In Figure 3, the 



Proceedings of the Institute of Acoustics 
 
 

Vol. 45. Pt.1 2023 

 

sidelobes of a rather loud object can be seen in the registered image, which appear as shadows in 
the difference image. Other objects that are visible in the registered base image and the partner image 
vanish. Examples for operational use-case scenarios are shown in Figure 4 and Figure 5. Unwanted 
clutter disappears in the difference image while newly placed objects appear (Figure 4). Figure 6 and 
Figure 7 additionally show results for registered images, generated with different processing chains 
and with different frequency bands.  

Table 1: List of configurations for the five examples, shown in Figure 3 - Figure 7. 

# Date Band Proc. Median 
fine corr. 

Mean 
error rate 

Antenna / Vehicle Leg 

1 
28.06.22 VHF ATLAS 

0.07 40.06 % 
Vision SAS Mk2 / SeaCat 

1 
29.06.22 HF ATLAS Vision SAS Mk1 / SeaOtter 

2 
28.06.22 VHF ATLAS 

0.116 26.75 % 
Vision SAS Mk2 / SeaCat 

4 
29.06.22 HF ATLAS Vision SAS Mk1 / SeaOtter 

3 
28.06.22 VHF ATLAS 

0.134 14.94 % 
Vision SAS Mk2 / SeaCat 

5 
29.06.22 HF ATLAS Vision SAS Mk1 / SeaOtter 

4 
20.11.18 MF WTD71 

0.34 0.81 % 
Vision SAS Mk1 / SeaOtter 

4 
20.11.18 HF ATLAS Vision SAS Mk1 / SeaOtter 

5 
20.11.18 HF WTD71 

0.26 10.17 % 
Vision SAS Mk1 / SeaOtter 

4 
13.06.22 HF ATLAS Vision SAS Mk1 / SeaOtter 

 

 

 

 
Figure 3: Example 1: Left: registered image (Vision SAS Mk2, VHF); Middle: Static partner image 

(Vision SAS Mk1, HF); Right: Difference image. 
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Figure 4: Example 2: Left: registered image (Vision SAS Mk2, VHF); Middle: Static partner image 

(Vision SAS Mk1, HF); Right: Difference image. 

 
Figure 5: Example 3: Left: registered image (Vision SAS Mk2, VHF); Middle: Static partner image 

(Vision SAS Mk1, HF); Right: Difference image. 

 
Figure 6: Example 4: Left: registered image (Vision SAS Mk1, MF, WTD71); Middle: Static partner 

image (Vision SAS Mk1, HF, ATLAS); Right: Difference image. 
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Figure 7: Example 5: Left: registered image (Vision SAS Mk1, HF, WTD71); Middle: Static partner 

image (Vision SAS Mk1, HF, ATLAS); Right: Difference image. 

As listed in Table 1, for most cases, the mean error rate was below 20 %. However, in Example 1 
and 2 the error rates are at 40.06 % and 26.32 % respectively. These error rates can occur due to 
environmental conditions such as the impact of internal waves or a strong swell in shallow water (8 
m to 15 m deep) caused the image quality to deteriorate beyond certain bounds. For Example 5 the 
valid image range was deduced from the ping-to-ping correlation, which comes as a side product of 
the SAS processing.  

 

4 STATISTICAL ANALYSIS ON SAS IMAGERY 

ATLAS ELEKTRONIK GmbH and WTD 71 have conducted several measurement campaigns that 
included surveys with AUVs equipped with a SAS. The data acquired with the Vision SAS Mk1 and 
the SeaOtter AUV between 2013 and 2018 was included in the aforementioned database structure. 
SAS imagery for all of these data was generated. Note that these datasets were not explicitly acquired 
for change detection purposes. The automated change detection processing was carried out for all 

data sets for which the overlap criterion max(𝑜p, 𝑜b) > 80 %  is fulfilled. This criterion was introduced 

to avoid extreme processing times and unsuccessful registrations. Furthermore the processing time 

was reduced by using a reduced resolution of 5 cm ⨉ 5 cm. It should be noted that leg pairs that were 
planned in opposite course direction are also included in the analysis. Results with a global correlation 
equal to zero, or a median fine correlation equal to zero are neglected for this evaluation. In total 3661 
samples are used for further statistical investigations. Successful change detection for these was 

identified by a false alarm reduction ∆FA≥ 0. With this definition, thresholds for successful processing 

were computed by maximizing 𝑃(𝐵 ∩  𝐶)=𝑃(𝑥p ≥ 𝜈p) ⋅ 𝑃(𝑥p < 𝜈p), where the event 𝐵 corresponds to 

successful change detection with 𝐵 = {𝑥p ≥ 𝜈p}. Here 𝑥p is a realization of the current parameter and 

𝜈p is the threshold for this particular parameter. One can for example consider the probability of 

successful change detection for a course difference beyond a certain threshold. In this case change 

detection is more likely to fail for a higher course difference threshold, and therefore 𝑃(𝐵) will 

decrease and 𝑃(𝐶) will increase. The event 𝐶 corresponds to unsuccessful change detection with 

𝐶 = {𝑥p < 𝜈p}. The probability for event 𝐵 is estimated by 𝑃(𝐵) = ∫ 𝑓𝑋p
+ (𝑥p) d𝑥p

∞

𝜈p
 where 𝑓𝑋p

+  is the 

estimated density function for a successful change detection of the random variable 𝑋p. The 

probability for event 𝐶 is estimated by 𝑃(𝐶) = ∫ 𝑓𝑋p
− (𝑥p) d𝑥p

𝜈p

−∞
 where 𝑓𝑋p

−  is the estimated density 

function for an unsuccessful change detection.  
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Figure 8: Probability density function estimates of the median fine correlation for successful and 

unsuccessful change detection results. 

The probability density function (PDF) directly resulting from the measurements, shown in Figure 8 
consists of 1815 samples with ∆FA≥ 0 and 1846 samples with ∆FA< 0. The optimal threshold to divide 

the two PDFs for the median fine correlation is 𝜈mfc = 0.14. The mean morphing error rate is analysed 

in the same manner. Here the optimal threshold is 𝜈mer = 49.32. With those thresholds, the dataset 
is divided in successful runs and unsuccessful runs and PDFs for the database metrics are estimated. 
 

Table 2: List of the estimated thresholds for compatible partner missions. 

Database Parameter Criterion  max(𝑃(𝐵)𝐵(𝐶)) Threshold 𝝂𝒑 

Absolute course difference 0.59 4.2° 

Absolute altitude difference 0.37 0.05 m 

Minimum line piece distance 0.24 0.96 m 

Average line piece distance 0.59 6.90 m 

Time difference 0.25 1.2 days 

 

Table 2 shows the results for the analysed parameters. The criterion value max(𝑃(𝐵)𝑃(𝐶))  for the 

time difference the minimum line piece distance and the absolute altitude difference is low in 
comparison to the remaining values. That means that these parameters do not appear to have the 
discriminative ability to predict a successful or unsuccessful change detection. With these parameters 
and the given database, no robust estimate for the limits of these values can be made. As shown in 
Figure 7, incoherent change detection is also possible for datasets with a time difference of 
approximately 3.5 years. For a more accurate analysis of the parameter time difference, more data 
would be required. The criterion is at 0.59 for both the average line piece distance and the absolute 
course difference. Here, a better separation between compatible and incompatible datasets can be 
made.  
In addition to these values, Figure 9 shows the success rate in percent for selected parameters, for 
data sets that also have a maximum absolute altitude difference below 2.8 m. This limit was chosen 
since there was no successful registration for an altitude difference above this value. Here, the 
success rate is visualised versus the line piece average distance and the absolute course difference, 
which are the two parameters that discriminate best. For an absolute course difference lower than 
10° and a line piece average distance lower than 25 m, a success rate of 70.2 % can be expected. In 
total, this is based on the number of successful change detection results (1365) and the number of 
failures (579) when these criteria on the database parameters are met. The lower the required 
deviations, the lower the number of available samples becomes. If a line piece average distance of 
6.9 m and an absolute course difference lower than 4.2° is achieved, the success rate rises 80.1 %. 
Here, in total 1070 successful change detection results and 266 samples unsuccessful change 
detection were identified.  
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Figure 9: Change detection success rate for all data sets with a maximum height difference below 

2.8 m. 

5 CONCLUSION 

The results of this study show exemplarily that incoherent change detection is suitable for processing 
SAS data from different signal processing chains, with different frequency bands and from different 
systems. For data recorded with difficult environmental parameters and therefore lower image quality, 
change detection can be performed with degraded quality factors. In order to be able to register image 
data robustly against influences such as multipath propagation or vehicle instabilities, an automatic 
selection of the start and end range based of image quality measures is conceivable as an extension. 
It is also possible to adjust the registration such that image quality variations are accounted for. For 
example, the coarse registration stage could select relevant image areas that are used for correlation, 
and excluding others. 
In addition, the influence of differences in the AUV mission parameters on the probability of success 
of change detection was shown based on a statistical study of a large number of processed partner 
legs. It was shown that for a maximum line piece average distance of 6.9 m, a maximum absolute 
course difference of 4.23° and a maximum altitude difference of 2.8 m, a success rate of 80.1 % is 
achieved. In order to be able to show further limits of change detection, it would also be beneficial to 
record further data with different sensing geometries and in waters with more rocks or clutter. Suitable, 
realistic mine-like targets would enable a more concise evaluation by means of ROC curves.  
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