
Proceedings of the Institute of Acoustics 

ACOUSTIC TOMOGRAPHY BY ORTHOGONALITY 
SAMPLING   
 
R. Potthast University of Reading, UK. 
 
 
INTRODUCTION  
Inverse scattering problems are of importance for many applications, for example for medical 
imaging, nondestructive testing, remote exploration, geophysical prospecting or radar. Usually, a 
wave is sent into a region of space which is to be investigated. Then, due to the structure of the 
unknown area or the existence of obstacles a scattered wave is generated which is measured far 
away from the objects under consideration. The task of inverse scattering theory is to reconstruct 
properties of the unknown scatterers from these remote measurements. Inverse scattering has 
developed into an important part of applied mathematics with a growing number of interesting and 
promising new mathematical techniques. 
 
Inverse scattering theory has a long history with classical contributions for example by Lax and 
Phillips [6]. An introduction into the theory of acoustic and electromagnetic inverse scattering can be 
found in the work of Colton and Kress [1]. More recently, new classes of methods have been 
introduced with sampling and probe methods, see [2] - [5], Their main idea is to formulate an 
indicator function mRμ  defined either in the space or on a set of test domains. This function cha-
racterizes the unknown scatterers, their physical properties or their shape. 
 
Here, our goal is to describe a recent method for the reconstruction of the location and shape of an 
unknown number of scattering objects from measurements of the far field pattern of the scattered 
acoustic fields. We will introduce the main idea of orthogonality sampling and study its properties. 
Then, we relate it to other schemes like the linear sampling method, the MUSIC algorithm or probe 
methods. The relation of orthogonality sampling to the point source method is investigated. Finally, 
we provide numerical examples of reconstructions in a simple setting.  
 
 
SCATTERING OF WAVES AND ORTHOGONALITY SAMPLING 
The goal of this section is to define the forward problem for scattering of a time-harmonic incident 
wave or of a time-dependent pulse by some obstacle. Here, for simplicity we will restrict our 
attention to the case of the Dirichlet boundary condition.  
 
We consider the scattering of some time-harmonic acoustic wave  by an 
impenetrable scatterer D with Dirichlet (sound-soft) boundary condition  
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in two dimensions. The scattered field is denoted by and the total field  su
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is a solution to the Helmholtz equation 
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with wave number k in the exterior of . We also assume that satisfies the Sommerfeld 
radiation condition 
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uniformly in all directions. It is well known [1], [2] that this scattering problem has a unique solution 
which depends continuously on the incident field. Also, the scattered field has the asymptotic 
behaviour of the form 
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for  uniformly in all directions. The field is known as far field pattern and serves as our 
data for the inverse problem. In principle, it can be measured if the phase of the sound field is fully 
recorded. Here, we think of either measurements carried out by a synchronized array of 
microphones or by a sweep technique which controls the time behavior of an incident pulse and by 
which we can measure the full phase information of the scattered field or its far field pattern, 
respectively, by Fourier transform of the measurements in the time domain.  
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Simulations of the far field pattern have been carried out by integral equation methods [1] via the 
Brackhage-Werner approach by a combined single- and double-layer potential on the boundary 
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The basic idea of orthogonality sampling is to study the function 

∫
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It can be seen as orthogonality product between the full far field pattern and the function 
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or as superposition of plane waves where the wheight function is the data  on some 
measurement surface 

∞u
Λ . In this sense (6) is just a part of the inverse Fourier transform of the far 

field pattern, as used by the Born approximation inversion for scattering by inhomogeneous media, 
compare [1]. However, in contrast to the Fourier transform here we extend this approach in a 
different way by the following multi-frequency and multi-direction indicator functions.  
 
For data given for an interval  of wave numbers we define ),ˆ( kxu∞ ],[ 21 kk
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i.e. we calculate the integral over the modulus of the term (6) with respect to the wave numbers. 
Similarly, if the far field pattern   is given for a set ),,ˆ( kdxu∞ Γ  of directions d of incidence, we 
define 
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Finally, for multi-frequency multi-wave data we define the orthogonality functional by 
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COMPARISON WITH OTHER METHODS 
There are many sampling and probe methods which have been developed since 1996, compare [1]-
[5]. Here, first we would like to describe the fundamental differences in the concept of the approach 
of the linear sampling method/ the MUSIC algorithm versus orthogonality sampling. Then, we 
discuss the relation of orthogonality sampling and the point source method [2].  
 
Both the linear sampling method and the MUSIC algorithm are based on the far field operator 
defined by 
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Which describes the far field pattern for a superposition of incident plane waves with strength 
Γ∈θθ ),(g . The key idea of the linear sampling method (and the same applies to the MUSIC 

algorithm) is to test if the function  defined in (7) is in the range of F. To this end the equation zf
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is solved by a regularization scheme. The method shows that the norm of g, depending on the point 
z, is large if z is not in the scatterer D and it is small if z is in D. In mathematical terms we 
investigate the range of the operator F.  
We observe that for orthogonality sampling we do not study F at all. The relation between  and 

the range of the operator F is not exploited. However, we directly study the scalar product of  

with the data . Though both methods use  the way in which the data is employed is based on 
a different concept.  
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Next, we need to compare orthogonality sampling with the point source method [2]. The point 
source method introduced by the author in 1996 has some resemblance to orthogonality sampling. 
It constructs a kernel function  such that the scattered field can be reconstructed from the far 

field pattern by 
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where  solves some ill-posed integral equation of the first kind. The point source method 
reconstructs the full scattered field and then looks for the unknown scatterer via the boundary 
condition for the total field. Thus, the similarity to orthogonality sampling is that the data are 
multiplied by some kernel and integrated over the measurement set 

zg

Γ . But the role and 
construction of the kernel is far beyond the simple exponential exploited by the orthogonality 
sampling method. The point source method works well for single-frequency one-wave data, where 
orthogonality sampling basically needs multi-frequency or high-frequency data to achieve good 
reconstructions, though the case of single-frequency multi-direction data is feasible. We can 
interpret the point source method and the orthogonality sampling scheme as two different schemes 
based on the joint idea of constructing an appropriate backprojection kernel  to exploit the 
measurements given for reconstruction.  
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NUMERICAL RESULTS 
The task of this part is to describe the numerical realization of the methods. We first discuss the 
simulation of the far field pattern. Then, we will provide a numerical study of the above functionals 
which visualize the scatterers under consideration.   

Vol. 30. Pt.2. 2008 
 

Page 295



Proceedings of the Institute of Acoustics 
 
 

For the calculation of the far field patterns as well as for simulations of the reduced scattered field 
(\ref{us red2}) we have used the Nystr\"om method as described in Colton and Kress [1]. For 
multiple scatterers we have not implemented the split of the weak singularity in the integrals, but 
ignored the singularity. This leads to very flexible code, for which scattering by various objects can 
be easily implemented, though having low order convergence. An example for a simulated total field 
for scattering by eight separate scatterers which basically consist out of two groups is shown in 
Figure 2. 
 
One-Wave Multi-Frequency 

We now show results for one-wave multi-frequency reconstructions via orthogonoality sampling. We 
will show results for some generic settings: 

• For several small scatterers 
• For a kite shaped scatterer 

The location of an unknown number of scatterers can be clearly seen in the Figure 1. It is an 
expected phenomenon that scatterers which are in the shadow of other scatterers cannot be seen 
when data for one direction of incidence only is used. In the two images of Figure 1 we can find only 
the three out of 5 objects which are enlighted by the incoming plane wave, depending on the 
direction of incidence. The reconstruction of the shape of a kite is shown in figure Figure 2. The 
method finds the enlighted side of the object very well. It does not find the shadow regions. 
 

(a) (b) 
 
Figure 1: Orthogonality Samping indicator function for one-wave multi-frequency scattering 
by a scatterer with 8 small components. The location of the components can be recognized 
by peaks of the indicator function. We show two different directions of incidence of a puls in 
(a) and (b). 
 

(a) (b) 
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Figure 2: Reconstruction of the kite shaped scatterer by orthogonality sampling from a pulse 
coming from the right (a) and from bottom-left (b). The method reconstructs mainly the 
shape of the side of the scatterer which is enlighted by the pulse.  
 
 
Multiple directions of Incidence 

Next, we would like to consider the fixed-frequency case where we use multiple directions of 
incidence. This case compares to the setting of the linear sampling method, the factorization 
method and the singular sources and probe methods. We will prove the the orthogonality sampling 
can generate images comparable to those of the linear sampling or factorization method, but with a 
well-posed sampling functional.  
 

(a) (b) 
 
Figure 3: Orthogonality sampling for fixed frequency and several directions of incidence as 
described in (9). We observe that the location and shape of the scatterers can be well 
reconstructed.  
 

 
 
Figure 4: Orthogonality sampling for fixed frequency and several directions of incidence as 
described in (9), now with more directions of incidence. The reconstruction is getting better 
as compared to the the results shown in Figure 3. 
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Multi-Direction Multi-Frequency 

Finally, we show results for multi-direction multi-frequency (MDMF). We have generated far field 
data where several objects have been present. Then, we calculated the functional in a 
neighbourhood of each of the objects in a higher resolution, which is shown in figures \ref{MDMF}, 
\ref{MDMF2}. This proves that detailed reconstruction of objects can be achieved even when other 
objects are present in space. In general, we have added 2-3\% stochastical error to the data before 
carrying out the reconstructions. 
 

(a) (b) 
 
Figure 5: Orthogonality sampling with the MDMF functional, i.e. multi-direction multi-
frequency. Here, detailed reconstructions of the location and shape of multiple obstacles are 
possible.  
 
 
 
REFERENCES 
1. D. Colton and R. Kress, “Inverse Acoustic and Electromagnetic Scattering Theory” 

Springer-Verlag (1992) 
2. R. Potthast, “Point Sources and Multipoles in Inverse Scattering Theory”, Chapman & Hall 

Lecture Notes (2001) 
3. Colton, D. and Cakoni, F.: Qualitative Methods in Inverse Scattering Theory Springer, 

Series on Interaction of Mathematics and Mechanics, 2006. 
4. Kirsch, A. and Grinberg, N.: The Factorization Method for Inverse Problems Oxford Lecture 

Series in Mathematics & Its Applications No. 36, 2008. 
5. R.Potthast, Topical Review: A survey on sampling and probe methods for inverse problems, 

Inverse Problems, Vol.22, R1-R47, 2006. 
6. Lax, P. and Phillips, R.S.: Scattering Theory, Academic Press (1967) 
7. R. Potthast, Orthogonality Sampling for Object Visualization, submitted for publication.  
 
 
  

Vol. 30. Pt.2. 2008 
 

Page 298


	INTRODUCTION 
	SCATTERING OF WAVES AND ORTHOGONALITY SAMPLING
	COMPARISON WITH OTHER METHODS
	NUMERICAL RESULTS
	One-Wave Multi-Frequency
	Multiple directions of Incidence
	Multi-Direction Multi-Frequency

	REFERENCES



