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ABSTRACT

Fibrous materials have been ftraditionally modelled as arrays of regularly-placed circular
cylinders in which rarefaction effects are not considered. These effects should be taken into
account when a characteristic pore/inclusion size of the material becomes comparable to the
mean molecular free path. Therefore, the oscillatory Stokes forced and heat transfer problems
have to be solved considering slip and temperature-jump boundary conditions on the solid
boundaries to estimate viscous and thermal losses. In this paper effective acoustical
quantities, such as speed of sound and attenuation coefficient, of random microfibrous
materials are studied numerically. The material geometry is constructed by using the
Metropolis method for canonical equilibrium ensembles with periodic boundary conditions.
Different array porosities and Knudsen number values are considered. Finally, classical semi-
phenomenological models are discussed and modified to describe viscous and thermal losses
in the abovementioned materials.

1. INTRODUCTION
Plane wave propagation in a homogenous medium can be fully described through two
quantities: the wave number k. and the characteristic impedance z.. A porous medium can be

modeled as an equivalent fluid when the wavelength largely exceeds the characteristic
pore/inclusion size. The viscous and thermal losses are accounted for by means of the dynamic
density p(w) and the dynamic bulk modulus K(w), both being complex and frequency

dependent functions'. These intrinsic properties are related to dynamic viscous k(w) and
thermal k'(w) permeabilities. They can be calculated from the solution of the oscillatory fluid flow

and thermal problems through the dynamic extension of the Darcy’s law? and an analogous
Darcy’s thermal law® respectively. Different approaches to characterizing porous materials have
been proposed. One of them consists in calculating dynamic permeabilities from their definition
(microstructural or direct calculation henceforth). A second approach relies on using semi-
phenomenological models. These models are based on scaling functions which depend on
macroscopic independently measurable parameters to describe dynamic viscous and thermal
permeabilities®*>®’. Despite their wide use, semi-phenomenological models cannot be directly
applied to sound propagation in a confined space. Therefore, they should be modified when
applied to describe acoustical properties of microporous materials. To properly describe
frequency-dependent viscous and thermal losses in these materials, the oscillatory Stokes
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forced and heat transfer problems have to be solved considering Knudsen and temperature-
jump boundary conditions on the solid boundaries. These two problems have been analytically
solved by Kozlov et al.? for straight pores of different shape. Although the significance of their
work is undoubtedly a cylindrical-pore approximation seems to be too basic for fibrous
materials. Historically, they have been modeled as arrays of circular cylinders. Numerous
analytical solutions for acoustical properties of regular arrays of cylinders, namely square and
hexagonal lattices, have been proposed by different authors®'®'"'2"* They have proven to give
reasonable agreement with experimental data. However, spatial regularity is rarely found in real
materials. In this work, a modified semi-phenomenological model is proposed to investigate the
slip/temperature-jump influence on sound speed c(w) and attenuation coefficient a, (w) of random
mono-disperse arrays of circular cylinders. Different array porosities ¢ and Knudsen number,
K, =lnean /T, Values are considered. The proposed modified model reduces to the classical one

when the characteristic pore/inclusion size is much larger than the mean free molecular path
lean OF the saturating fluid. The arrays are generated using the Metropolis method for canonical
equilibrium ensembles with periodic boundary conditions™. A representative number of these
arrays are used to calculate mean effective acoustical quantities and all the macroscopic
parameters involved in the modified model. These parameters are compared to the analytical
solution and numerical results for a regular array of cylinders arranged in square lattice’. The
presence of some effects previously observed in random arrays of cylinders under negligible
confined effects'® is also investigated in microfibrous materials. The paper is organized as
follows. In section Il, the theory and methods are described. Section Ill presents results and
discussion. Concluding remarks are presented in section IV.

2. THEORY AND METHODS

A. Oscillatory Stokes forced problem with slip boundary condition

Consider a homogenous rigid porous medium saturated by a Newtonian fluid of viscosity 7,
density p, and porosity ¢. Its characteristic pore/inclusion size is comparable to the mean
molecular free path, i.e. r=0(l.,,) . The long-wavelength linear response to a macroscopic

harmonic small-amplitude pressure gradient vpe!® with angular frequency » can be obtained

from the solution of the oscillatory Stokes forced problem [equations (1) and (2)]. This problem
has been derived using homogenization theory accounting for the slip phenomenon in
reference'”. Assuming separation of scales between the macroscopic characteristic length L
and either a physical quantity involved in the problem or a characteristic size | of the porous
medium, an expansion parameter ¢=1/L can be defined. Thus, the existence of a
representative elementary volume (REV ) in which the problem is solved can also be
ensured. The dimensionless equations at the microscopic level (order ') derived in reference”
are recalled

nViu® -v p@-v p® = jopu® and VvV, -u®=0 inQ, (1)
u® =—K, (- v, u®.n)t® onT" 2)

where t® and n are the unitary vectors tangential and normal to I'. Subscripts y and X

denote microscopic and macroscopic dimensionless space variable respectively (see Chastanet
et al."” for more detail). Periodic boundary conditions for velocity and pressure on the REV’s
boundaries are also applied. The dynamic extension of the Darcy’s law [equation (3)] provides a
way of calculating the dynamic permeability tensor including slip effects k(w,K,) = <k(y,a), Kn)> .

) =_<k(y,a), Kn)>
o) -0t

v,p? (3)



where the average is taken over the fluid phase ()=], -dQ/|0 and |Q] is a spatial measure,
e.g. area or volume, of the REV"". For isotropic materials or if one considers a preferential flow
direction the dynamic viscous permeability tensor becomes a scalar quantity k(e,K,). The
complex frequency-dependent dynamic density function p(w,K,) is related to dynamic viscous
permeability and dynamic tortuosity a(w,K,) as follows:

pla,K,) = a(w,K,)py = n¢/ jok(e, K,) (4)

B. Oscillatory heat transfer problem with temperature-jump boundary condition
Consider an isothermal solid frame saturated by a fluid with thermal conductivity «, specific
heat at constant pressure C, and specific heat ratio y. The temperature distribution can be

calculated from the solution of an oscillatory heat transfer problem given by equation (5). Under
confinement, the temperature on the solid boundaries can no be longer considered zero.
Instead the temperature-jump boundary condition should be used, i.e. temperature on the solid
boundaries is proportional to the temperature flux (equation (6)).

ja)pCpr(o) = KV?,T(O) + jop© inQ; (5)
@ = Lﬁvyr“)) N onTI" (6)
(7 +1) Ny,

where N, =Cn/x is the Prandtl number.

Lafarge et al’. have derived an analogous dynamic thermal Darcy’s law using homogenization
theory. However, the thermal slip influence has not been taken into account in their work. Based
on findings of references®®, this law may be extended to account for slip influence as is shown
in equation (7)

(0 ja’<k'(3”;a" Kn)) b© -

The dynamic bulk modulusK,(®,K,) is related to dynamic thermal permeability k'(w,K,) and
compressibility C(w,K,) as follows:

, -1
7P, . C k'(,K,)
K, (o0,K)=——"—=yP| y- jo -)— 8
(@ Kp) Cl0.K) 7/0[7 jop,(y —1) p” (8)
where B, the is atmospheric pressure. Periodic boundary conditions for temperature on the
REV’s boundary are also applied.

C. Scaling function for dynamic viscous permeability

Johnson et al’. proposed a scaling function to calculate dynamic viscous permeability. This
function matches two leading terms at high frequencies but only the first term at low
frequencies. Pride et al.® noted that Johnson et al.> model is not sufficiently accurate in the
frequency range where both viscous and inertial interactions are of the same order. They
proposed a more accurate scaling function which preserves the two leading terms at both low
and high frequency limits. The expression for the dynamic viscous permeability proposed by
Pride et al.° depends on porosity 4, viscous permeability ko, static tortuosity «;, viscous

characteristic length A and tortuosity «,, . It is given by equation (9).
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where P, =M, /4(ay/a, -1); M, =8kya, / gA* is the viscous shape factor and w, =ng/a kop, is
the viscous characteristic frequency.




The Knudsen number-dependent viscous permeability, k,(K,) , is calculated from the solution of
equations (1), setting frequency equal to zero, and (2) by means of equation (3). Static viscous
tortuosity is given by «y(K,)=Re{a(K,,o—0)}. At high frequencies, viscosity effect can be

neglected and the fluid flow satisfies the Laplace equation (potential flow)®. Brown'® has noted
that the same type of equation also describes the electrical conduction problem for a porous
medium in which the solid phase is insulating and the saturating fluid is conducting. Therefore,
the limiting fluid flow problem can be posed as an electrical one in which the scaled electric field
gives the solution for the fluid high-frequency flow problem. This is given by:

VZ9=0 inQ, n-vd=n-e onl (10)
where n is the unit normal pointing outward from the pore region and ¢ is the deviatoric part of
an electric potential. The latter is related to the scaled electric field (local electrical field divided
by the applied macroscopic potential gradient) as E=e-V$ (Hodge decomposition); e being
the unit electric field. Periodic boundary conditions on the REV’s boundaries are also applied. If
one considers an isotropic material or a preferential flow direction, tortuosity «,and viscous

characteristic length A can be calculated as follows:
-1 1
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It has been found®'® that high-frequency macroscopic parameters do not depend on Knudsen
number.

D. Scaling function for dynamic thermal permeability
Lafarge et al.** have introduced the following scaling function to calculate dynamic thermal
permeability.
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where R =M, /4(aj-1). M, =8kj/¢r? is the thermal shape factor and o =x4/C,pok; is the
thermal characteristic frequency.

The static temperature distribution z{) is calculated from the solution of a modified equation (5)

and (6). The modification consists in setting the left-hand side to zero and the term jowp© is
replaced by p®. The Knudsen number-dependent thermal permeability is related to the static

temperature distribution through ké(Kn)=K<réﬂ)< >/p(°) .Static thermal tortuosity is given by

. 0 2\ o\ - 7 . .
ao(Kn)—<(z'0’K ><TO’K> . Finally, the thermal characteristic length® A' is a geometrical
parameter equal to twice the volume-to-pore-surface ratio, i.e. A'= zde-(de)fl.

E. Acoustical properties
The acoustic behaviour of a porous material is completely determined by the wave number
k. (@, K,) and the characteristic impedance Z (o,K,) ' They both are functions of frequency and

Knudsen number and are related to dynamic density and dynamic bulk modulus as follows:

ko (0.K,)) = o p(@, K, ) KMo, K,,) Zo(@,K,) = (U ¢)/p(0, KK, (@,K,) (13)
Speed of sound, c(w,K,), in the porous material and attenuation coefficient, a (v, K,) are given
by:

C(w’ Kn):w/Re{kc(waKn)} at(wiKn):_Im{kc(wi Kn)} (14)




F. Generation of the microfibrous material geometries (REV)

The random arrays, which correspond to the representative elementary volume REV, are
constructed by using the Metropolis method for Gibbs ensembles (equilibrium ensembles). A
detailed explanation of this method can be found in reference'. Only the key steps of the
algorithm are delineated here. The method requires an initial configuration of N cylinders
characterized by their centre coordinates and arranged in a given lattice. Then, one perturbs
every cylinder centre with two random uniformly-distributed variables within the range [-b,b], i.e.

the cylinders can freely move throughout the REV of side length 2b. The next step consists of
checking the distances between the cylinders in order to avoid overlap. This is done considering
a certain tolerance. If there is no overlap, the movement is accepted otherwise the cylinder
returns to its previous position. Finally, periodic boundary conditions are implemented to reduce
finite-size effects.

G. Numerical method (FEM)

The finite element method (FEM) has been employed for solving all the equations in this work.
The FEM software Comsol Multiphysics'® has been used. Second-order Lagrangian elements
have been used to model the velocity components and temperature distribution, whereas linear
elements approximated the pressure field. The elements were chosen so that a good enough
resolution of the geometry is always achieved. A mesh refining analysis has been performed to
ensure the convergence of the solutions. The slip boundary conditions have been implemented
in the aforementioned software. More details can be found in reference.

3. RESULTS AND DISCUSION
A square regular lattice composed by 361 cylinders of radius r has been selected as the
starting lattice to generate 30 random configurations for a Knudsen number K, =0.05
(r=1.2pm considering a | ., =60nm). This has been done for porosity values ranging from
0.65 to 0.95 in steps of 0.1. The random geometries have been spatially scaled to generate the
configurations for K,=0.1 and K, =0.3 (radii equal to 0.6 and 0.2 ym respectively). Figure 1

shows the static y-component fluid velocity (top) and static temperature distribution (bottom) of
four arbitrary selected random configurations for porosities 0.65 to 0.95 (left to right) and
K, =0.05. The gradient of pressure for the fluid flow problem has been applied in the negative y-

axes direction. This exemplifies the type of geometries generated with the Metropolis method.

Figure 1: Static y-component of the fluid velocity (top) and static temperature distribution (bottom) for
porosities from 0.65 to 0.95 (left to right) for K, =0.05.



Figure 2 shows dimensionless viscous (top) and thermal (bottom) permeabilities as function of
porosity for three Knudsen number values 0.05, 0.1 and 0.3 (left to right). The red line
represents the average value taken over 30 random configurations. The black line corresponds
to the numerical solution for an array of micro cylinders arranged in a square lattice. This is
referred to regular configuration from now on. Blue dots correspond to the analytical solution for
the regular configuration™.

It can be seen that for high porosity arrays the numerical and the analytical solutions for regular
configurations are close each other. However, the analytical solution has a slightly different
value compared to the numerical result at porosity 0.65. The numerical result is more accurate
in this case. This disagreement for denser arrays has been explained in detail in reference’®.

In random arrays the mean value of viscous permeability is greater than that of regular arrays,

ko™ (Kn) > kg (Ky) for ¢ >¢,, where the critical porosity value is ¢, ~0.74. For denser arrays,

¢ < ¢,, the opposite trend has been found kj*"(K,)<k;*(K,). The same tendency and critical
porosity value has been observed in random materials under negligible confinement'®. This
suggests that the critical porosity is related to the spatial distribution of the fibers and not to the
scale.

Thermal permeability of random materials presents higher values than that of the ordered ones
over the whole range of porosity studied in this paper i.e. k{®(K,)>k{®(K,). This has also
been observed in reference’®. Static viscous tortuosity for random materials is larger than for
regular materials o5 (K,) > o™ (K,) . This means that random materials exhibit larger effective
fluid-inertia enhancement at low frequencies. Similar behaviour is identified in the case of static
thermal tortuosity oy (K,) >y (K,) . It is worth noting that all these parameters are affected by

the slip condition.

High-frequency parameters, i.e. tortuosity and characteristic lengths, are not influenced by the
slip condition®'*. This is expected since tortuosity is a geometrical parameter which does not
depend on scale. In addition, it is a deterministic function of porosity and pore/inclusion shape
for regular configurations. In random materials, tortuosity depends on porosity, the spatial
distribution and the pore/inclusion shape. It has been found that tortuosity for random materials

is always greater than that of regular ones with the same porosity o™ >al. Viscous

characteristic length for random configurations attains a slightly lower value than regular
configurations. Thermal characteristic length does not depend on spatial distribution when
dealing with non-overlapping configurations. Therefore, its value is the same for random and
regular configurations which have the same porosity.

Figure 3 shows dynamic viscous (left) and thermal (right) permeabilities calculated directly
along with their calculation obtained by using the modified semi-phenomenological model. The
direct calculation has been obtained by solving equations (1) to (3) for the viscous case and
equations (5) to (7) for the thermal one. This has been performed for a discrete set of
frequencies. Their values have been carefully selected to appropriately cover the viscous and
inertial regime for each configuration. Two configurations per porosity per Knudsen number
have been considered, i.e. 24 randomly selected disordered configurations are studied. The
modified model given by equations (9) and (12) has been used to calculate dynamic viscous
and thermal permeabilities.

Despite the effect of boundary slip on dynamic viscous and thermal permeabilities, their
universal scaling nature remains intact. This means that the expressions proposed by Pride et
al.® and Lafarge et al.>** can still be used, provided that low frequency macroscopic parameters
are calculated considering slip and temperature-jump boundary conditions. This provides a
faster way of characterizing the acoustic behaviour comparing to the direct calculation.
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Figure 2: Dimensionless static viscous permeability (top) and thermal permeability (bottom) as function of
porosity for Knudsen number values 0.05, 0.1 and 0.3 (left to right).
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Figure 3: Normalized dynamic viscous (left) and thermal (right) permeabilities. Direct calculation (real part
in black circles and imaginary part in black squares) and modified (pjcal) semi-phenomenological model
(real part in blue lines, imaginary part in red lines).

Figure 4 shows mean value of attenuation coefficient (left) and normalized sound speed
c(w,K,)/c, (right) as function of the ratio between the cylinders radius and the boundary layer

thickness ¥ =r/6, =r\ pyw!2n for different porosities and Knudsen numbers. The mean value
has been taken over 30 random configurations per porosity (4 values) per Knudsen number (3

values).
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Figure 4: Mean value of attenuation coefficient (left) and sound speed (right) for porosities 0.65 (blue),
0.75 (green), 0.85 (black) and 0.95 (red). Knudsen numbers K, =0.05 (dashed line) and K, =0.3
(continuous line).
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Figure 5: Attenuation coefficient (left) and sound speed (right) ratios for porosities 0.65 to 0.95 (blue,
green, black and red). Knudsen numbers K, =0.05 (dashed line) and K, =0.3 (continuous line).

Attenuation coefficient is a monotonic increasing function of frequency. It has greater values for
larger Knudsen numbers. In addition, it is larger for denser materials. Mean value of sound
speed for K, =0.05 is smaller than that for K, =0.3 when ¥ <<1. This trend is more pronounced

in the transition region, i.e. where viscous and inertial interactions are of the same order of
magnitude. At high frequencies, sound speed tends to be the same asymptotic value, i.e.

-1/2
co(a;a”) . This is due to the fact that the generated configurations possess the same spatial

distribution and porosity, and also the inexistent slip influence at high frequencies. Regular
configurations show the same trend for both attenuation coefficient and speed of sound.
However, this is not shown here for the sake of brevity. See for example reference.

Figure 5 shows the ratio between the mean value of attenuation coefficient of random
configurations and the attenuation coefficient of regular configuration (left). The ratio for sound
speed is shown on the right side of this figure. The influence of the critical porosity is clearly
identified in the region where ¥ <<1. Attenuation coefficient for random configurations is larger



than that of regular ones when ¢<g¢ for all Knudsen number values. The opposite trend is
found when ¢ > ¢, .

The attenuation coefficient ratio becomes larger when Knudsen number diminishes for
porosities ¢$<0.85 and ¥<<1. For higher porosity configurations (¢>0.85), the opposite
behaviour is observed at low frequencies, i.e. the deviation of the mean value of attenuation
coefficient from that of the regular configurations is greater when Knudsen number increases.
When r~0(s,)and ¥ is slightly greater than one, the attenuation coefficient ratio increases
when the Knudsen number rises. Therefore, the spatial distribution of the fibres plays an
important role when the fibre radius is of the order of the viscous boundary layer thickness for
confined materials. Speed of sound ratio exceeds the unit when ¢>4, and ¥ <<1 for all
Knudsen number values. The sound speed ratio is smaller when the Knudsen number
diminishes for porosities ¢<0.85 and ¥ <<1. When r~0(s,)and ¥ is slightly larger than one,
the sound speed ratio shows a pronounced peak for larger Knudsen numbers and dense
configurations. After this peak, the ratio starts decreasing for all Knudsen numbers and shows
smaller values for more confined configurations. At the high-frequency limit, the configurations

converge to the same value /o /' . This is independent of the scale.

4. CONCLUSIONS

A modified semi-phenomenological model has been proposed to investigate the
slip/temperature-jump influence on acoustical properties of random microfibrous materials. The
model has the same functional form as the original formulation®”. However, the low frequency
macroscopic parameters should be calculated considering slip and temperature-jump boundary
conditions. This provides a faster way of characterizing the acoustic behaviour in comparison to
the direct calculation. This is the central finding of this paper.

A critical porosity has been identified. In a random array the mean value of viscous permeability
is greater than that for a regular array for porosities larger than the critical one, ¢>4.. For

denser arrays, ¢<¢,, the opposite trend has been found. The same tendency and critical

porosity value has been observed in non-confined random materials'®. This suggests that the
critical porosity is related to the spatial distribution and not to the scale. This critical porosity
clearly determines the acoustic behaviour of random microfibrous materials at low frequencies
(viscous regime), i.e. the attenuation coefficient for random configurations is larger than that of
regular ones when ¢<g, for all Knudsen number values. The opposite trend is found when

¢>¢.. In a similar way, speed of sound in random materials is greater than that in regular
configurations for porosities larger than ¢, .The opposite behaviour is observed when ¢<¢,. In

general, the spatial distribution of the fibres plays an important role when the fibre radius is of
the order of the viscous boundary layer thickness for sound propagation in confined space.
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