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ABSTRACT 
Fibrous materials have been traditionally modelled as arrays of regularly-placed circular 
cylinders in which rarefaction effects are not considered. These effects should be taken into 
account when a characteristic pore/inclusion size of the material becomes comparable to the 
mean molecular free path. Therefore, the oscillatory Stokes forced and heat transfer problems 
have to be solved considering slip and temperature-jump boundary conditions on the solid 
boundaries to estimate viscous and thermal losses. In this paper effective acoustical 
quantities, such as speed of sound and attenuation coefficient, of random microfibrous 
materials are studied numerically. The material geometry is constructed by using the 
Metropolis method for canonical equilibrium ensembles with periodic boundary conditions. 
Different array porosities and Knudsen number values are considered. Finally, classical semi-
phenomenological models are discussed and modified to describe viscous and thermal losses 
in the abovementioned materials. 
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1. INTRODUCTION 
Plane wave propagation in a homogenous medium can be fully described through two 
quantities: the wave number ck  and the characteristic impedance cZ . A porous medium can be 
modeled as an equivalent fluid when the wavelength largely exceeds the characteristic 
pore/inclusion size. The viscous and thermal losses are accounted for by means of the dynamic 
density ( )ρ ω  and the dynamic bulk modulus ( )K ω , both being complex and frequency 
dependent functions1. These intrinsic properties are related to dynamic viscous ( )k ω  and 
thermal ( )k ω′  permeabilities. They can be calculated from the solution of the oscillatory fluid flow 
and thermal problems through the dynamic extension of the Darcy’s law2 and an analogous 
Darcy’s thermal law3 respectively. Different approaches to characterizing porous materials have 
been proposed. One of them consists in calculating dynamic permeabilities from their definition 
(microstructural or direct calculation henceforth). A second approach relies on using semi-
phenomenological models. These models are based on scaling functions which depend on 
macroscopic independently measurable parameters to describe dynamic viscous and thermal 
permeabilities3,4,5,6,7. Despite their wide use, semi-phenomenological models cannot be directly 
applied to sound propagation in a confined space. Therefore, they should be modified when 
applied to describe acoustical properties of microporous materials. To properly describe 
frequency-dependent viscous and thermal losses in these materials, the oscillatory Stokes 



forced and heat transfer problems have to be solved considering Knudsen and temperature-
jump boundary conditions on the solid boundaries. These two problems have been analytically 
solved by Kozlov et al.8 for straight pores of different shape. Although the significance of their 
work is undoubtedly a cylindrical-pore approximation seems to be too basic for fibrous 
materials. Historically, they have been modeled as arrays of circular cylinders. Numerous 
analytical solutions for acoustical properties of regular arrays of cylinders, namely square and 
hexagonal lattices, have been proposed by different authors9,10,11,12,13. They have proven to give 
reasonable agreement with experimental data. However, spatial regularity is rarely found in real 
materials. In this work, a modified semi-phenomenological model is proposed to investigate the 
slip/temperature-jump influence on sound speed ( )c ω and attenuation coefficient ( )ta ω of random 
mono-disperse arrays of circular cylinders. Different array porosities φ  and Knudsen number, 

/n meanK l r= , values are considered. The proposed modified model reduces to the classical one 
when the characteristic pore/inclusion size is much larger than the mean free molecular path 

meanl of the saturating fluid. The arrays are generated using the Metropolis method for canonical 
equilibrium ensembles with periodic boundary conditions14. A representative number of these 
arrays are used to calculate mean effective acoustical quantities and all the macroscopic 
parameters involved in the modified model. These parameters are compared to the analytical 
solution and numerical results for a regular array of cylinders arranged in square lattice15. The 
presence of some effects previously observed in random arrays of cylinders under negligible 
confined effects16 is also investigated in microfibrous materials. The paper is organized as 
follows. In section II, the theory and methods are described. Section III presents results and 
discussion. Concluding remarks are presented in section IV. 

2. THEORY AND METHODS 
A. Oscillatory Stokes forced problem with slip boundary condition 
Consider a homogenous rigid porous medium saturated by a Newtonian fluid of viscosity η , 
density 0ρ  and porosity φ . Its characteristic pore/inclusion size is comparable to the mean 
molecular free path, i.e. ( )meanr O l= . The long-wavelength linear response to a macroscopic 
harmonic small-amplitude pressure gradient j tpe ω∇   with angular frequency ω  can be obtained 
from the solution of the oscillatory Stokes forced problem [equations (1) and (2)]. This problem 
has been derived using homogenization theory accounting for the slip phenomenon in 
reference17. Assuming separation of scales between the macroscopic characteristic length L  
and either a physical quantity involved in the problem or a characteristic size l  of the porous 
medium, an expansion parameter /l Lε =  can be defined. Thus, the existence of a 
representative elementary volume (REV Ω ) in which the problem is solved can also be 
ensured. The dimensionless equations at the microscopic level (order 1ε ) derived in reference17 
are recalled 
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where (0)
1t  and n  are the unitary vectors tangential and normal to 'Γ . Subscripts y  and x  

denote microscopic and macroscopic dimensionless space variable respectively (see Chastanet 
et al.17 for more detail). Periodic boundary conditions for velocity and pressure on the REV’s 
boundaries are also applied. The dynamic extension of the Darcy’s law [equation (3)] provides a 
way of calculating the dynamic permeability tensor including slip effects ( , ) ( , , )n nK y Kω ω=k k .  
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where the average is taken over the fluid phase 
f

dΩ⋅ = ⋅ Ω Ω∫  and Ω  is a spatial measure, 

e.g. area or volume, of the REV17. For isotropic materials or if one considers a preferential flow 
direction the dynamic viscous permeability tensor becomes a scalar quantity ( , )nk Kω . The 
complex frequency-dependent dynamic density function ( , )nKρ ω  is related to dynamic viscous 
permeability and dynamic tortuosity ( , )nKα ω  as follows: 

0( , ) ( , ) ( , )n n nK K j k Kρ ω α ω ρ ηφ ω ω= =     (4) 

B. Oscillatory heat transfer problem with temperature-jump boundary condition 
Consider an isothermal solid frame saturated by a fluid with thermal conductivity κ , specific 
heat at constant pressure pC  and  specific heat ratio γ . The temperature distribution can be 
calculated from the solution of an oscillatory heat transfer problem given by equation (5). Under 
confinement, the temperature on the solid boundaries can no be longer considered zero. 
Instead the temperature-jump boundary condition should be used, i.e. temperature on the solid 
boundaries is proportional to the temperature flux (equation (6)). 

(0) 2 (0) (0)         in p y fj C j pωρ τ κ τ ω= ∇ + Ω     (5) 

( )
(0) (0)2              on '

1
n

y
pr

K
N

γτ τ
γ

= ∇ ⋅ Γ
+

n     (6) 

where /pr pN C η κ=  is the Prandtl number.  
Lafarge et al3. have derived an analogous dynamic thermal Darcy’s law using homogenization 
theory. However, the thermal slip influence has not been taken into account in their work. Based 
on findings of references8,15, this law may be extended to account for slip influence as is shown 
in equation (7) 
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The dynamic bulk modulus ( , )a nK Kω  is related to dynamic thermal permeability ( , )nk Kω′  and 
compressibility ( , )nC Kω  as follows: 
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where 0P  the is atmospheric pressure. Periodic boundary conditions for temperature on the 
REV’s boundary are also applied. 

C. Scaling function for dynamic viscous permeability 
Johnson et al5. proposed a scaling function to calculate dynamic viscous permeability. This 
function matches two leading terms at high frequencies but only the first term at low 
frequencies. Pride et al.6 noted that Johnson et al.5 model is not sufficiently accurate in the 
frequency range where both viscous and inertial interactions are of the same order. They 
proposed a more accurate scaling function which preserves the two leading terms at both low 
and high frequency limits. The expression for the dynamic viscous permeability proposed by 
Pride et al.6 depends on porosityφ , viscous permeability 0k , static tortuosity 0α′ , viscous 
characteristic length Λ  and  tortuosity α∞ . It is given by equation (9). 
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where ( )0/ 4 / 1v vP M α α∞= − ; 2
08 /vM k α φ∞= Λ  is the viscous shape factor and 0 0/v kω ηφ α ρ∞=  is 

the viscous characteristic frequency. 



The Knudsen number-dependent viscous permeability, 0 ( )nk K , is calculated from the solution of 
equations (1), setting frequency equal to zero, and (2) by means of equation (3). Static viscous 
tortuosity is given by { }0 ( ) Re ( , 0)n nK Kα α ω= → . At high frequencies, viscosity effect can be 
neglected and the fluid flow satisfies the Laplace equation (potential flow)5. Brown18 has noted 
that the same type of equation also describes the electrical conduction problem for a porous 
medium in which the solid phase is insulating and the saturating fluid is conducting. Therefore, 
the limiting fluid flow problem can be posed as an electrical one in which the scaled electric field 
gives the solution for the fluid high-frequency flow problem. This is given by: 

2 0     in                on fϑ ϑ∇ = Ω ⋅∇ = ⋅ Γn n e     (10) 
where n  is the unit normal pointing outward from the pore region and ϑ  is the deviatoric part of 
an electric potential. The latter is related to the scaled electric field (local electrical field divided 
by the applied macroscopic potential gradient) as ϑ= −∇E e  (Hodge decomposition); e  being 
the unit electric field. Periodic boundary conditions on the REV’s boundaries are also applied. If 
one considers an isotropic material or a preferential flow direction, tortuosity α∞ and viscous 
characteristic length Λ  can be calculated as follows: 
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It has been found8,15 that high-frequency macroscopic parameters do not depend on Knudsen 
number. 

D. Scaling function for dynamic thermal permeability 
Lafarge et al.3,4 have introduced the following scaling function to calculate dynamic thermal 
permeability. 
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where ( )0/ 4 1t tP M α′= − . 2
08 / 'tM k φ′= Λ  is the thermal shape factor and 0 0/t pC kω κφ ρ ′=  is the 

thermal characteristic frequency.  
The static temperature distribution (0)

0, nKτ  is calculated from the solution of a modified equation (5) 

and (6). The modification consists in setting the left-hand side to zero and the term (0)j pω  is 
replaced by (0)p . The Knudsen number-dependent thermal permeability is related to the static 

temperature distribution through (0) (0)
0 0,( ) /

nn Kk K pκ τ′ = .Static thermal tortuosity is given by 
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parameter equal to twice the volume-to-pore-surface ratio, i.e. ( ) 1
' 2 d d

−
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E. Acoustical properties 
The acoustic behaviour of a porous material is completely determined by the wave number 

( , )c nk Kω  and the characteristic impedance ( , )c nZ Kω 1. They both are functions of frequency and 
Knudsen number and are related to dynamic density and dynamic bulk modulus as follows: 

1( , ) ( , ) ( , )c n n a nk K K K Kω ω ρ ω ω−=                ( , ) (1 / ) ( , ) ( , )c n n a nZ K K K Kω φ ρ ω ω=    (13) 
Speed of sound, ( , )nc Kω , in the porous material and attenuation coefficient, ( , )t na Kω  are given 
by: 

{ }( , ) / Re ( , )n c nc K k Kω ω ω=                          { }( , ) Im ( , )t n c na K k Kω ω= −    (14) 



F. Generation of the microfibrous material geometries (REV) 
The random arrays, which correspond to the representative elementary volume REV, are 
constructed by using the Metropolis method for Gibbs ensembles (equilibrium ensembles). A 
detailed explanation of this method can be found in reference14. Only the key steps of the 
algorithm are delineated here. The method requires an initial configuration of N  cylinders 
characterized by their centre coordinates and arranged in a given lattice. Then, one perturbs 
every cylinder centre with two random uniformly-distributed variables within the range [ , ]b b− , i.e. 
the cylinders can freely move throughout the REV of side length 2b . The next step consists of 
checking the distances between the cylinders in order to avoid overlap. This is done considering 
a certain tolerance. If there is no overlap, the movement is accepted otherwise the cylinder 
returns to its previous position. Finally, periodic boundary conditions are implemented to reduce 
finite-size effects. 

G. Numerical method (FEM) 
The finite element method (FEM) has been employed for solving all the equations in this work. 
The FEM software Comsol Multiphysics19 has been used. Second-order Lagrangian elements 
have been used to model the velocity components and temperature distribution, whereas linear 
elements approximated the pressure field. The elements were chosen so that a good enough 
resolution of the geometry is always achieved. A mesh refining analysis has been performed to 
ensure the convergence of the solutions. The slip boundary conditions have been implemented 
in the aforementioned software. More details can be found in reference15. 

3. RESULTS AND DISCUSION  
A square regular lattice composed by 361 cylinders of radius r  has been selected as the 
starting lattice to generate 30 random configurations for a Knudsen number 0.05nK =  
( 1.2r = μm considering a 60meanl = nm). This has been done for porosity values ranging from 
0.65 to 0.95 in steps of 0.1. The random geometries have been spatially scaled to generate the 
configurations for 0.1nK =  and 0.3nK =  (radii equal to 0.6 and 0.2 μm respectively). Figure 1 
shows the static y-component fluid velocity (top) and static temperature distribution (bottom) of 
four arbitrary selected random configurations for porosities 0.65 to 0.95 (left to right) and 

0.05nK = . The gradient of pressure for the fluid flow problem has been applied in the negative y-
axes direction. This exemplifies the type of geometries generated with the Metropolis method. 
 

 

 
Figure 1: Static y-component of the fluid velocity (top) and static temperature distribution (bottom) for 

porosities from 0.65 to 0.95 (left to right) for 0.05nK = . 



Figure 2 shows dimensionless viscous (top) and thermal (bottom) permeabilities as function of 
porosity for three Knudsen number values 0.05, 0.1 and 0.3 (left to right). The red line 
represents the average value taken over 30 random configurations. The black line corresponds 
to the numerical solution for an array of micro cylinders arranged in a square lattice. This is 
referred to regular configuration from now on. Blue dots correspond to the analytical solution for 
the regular configuration15. 
It can be seen that for high porosity arrays the numerical and the analytical solutions for regular 
configurations are close each other. However, the analytical solution has a slightly different 
value compared to the numerical result at porosity 0.65. The numerical result is more accurate 
in this case. This disagreement for denser arrays has been explained in detail in reference15. 
In random arrays the mean value of viscous permeability is greater than that of regular arrays, 

0 0( ) ( )regran
n nk K k K>  for  cφ φ> , where the critical porosity value is 0.74cφ ≈ . For denser arrays, 

cφ φ< , the opposite trend has been found 0 0( ) ( )regran
n nk K k K< . The same tendency and critical 

porosity value has been observed in random materials under negligible confinement16. This 
suggests that the critical porosity is related to the spatial distribution of the fibers and not to the 
scale.  
Thermal permeability of random materials presents higher values than that of the ordered ones 
over the whole range of porosity studied in this paper i.e. 0 0( ) ( )regran

n nk K k K′ ′> . This has also 
been observed in reference16. Static viscous tortuosity for random materials is larger than for 
regular materials 0 0( ) ( )regran

n nK Kα α> . This means that random materials exhibit larger effective 
fluid-inertia enhancement at low frequencies. Similar behaviour is identified in the case of static 
thermal tortuosity 0 0( ) ( )regran

n nK Kα α′ ′> . It is worth noting that all these parameters are affected by 
the slip condition. 
High-frequency parameters, i.e. tortuosity and characteristic lengths, are not influenced by the 
slip condition8,15. This is expected since tortuosity is a geometrical parameter which does not 
depend on scale. In addition, it is a deterministic function of porosity and pore/inclusion shape 
for regular configurations. In random materials, tortuosity depends on porosity, the spatial 
distribution and the pore/inclusion shape. It has been found that tortuosity for random materials 
is always greater than that of regular ones with the same porosity ran regα α∞ ∞> . Viscous 
characteristic length for random configurations attains a slightly lower value than regular 
configurations. Thermal characteristic length does not depend on spatial distribution when 
dealing with non-overlapping configurations. Therefore, its value is the same for random and 
regular configurations which have the same porosity.  
Figure 3 shows dynamic viscous (left) and thermal (right) permeabilities calculated directly 
along with their calculation obtained by using the modified semi-phenomenological model. The 
direct calculation has been obtained by solving equations (1) to (3) for the viscous case and 
equations (5) to (7) for the thermal one. This has been performed for a discrete set of 
frequencies. Their values have been carefully selected to appropriately cover the viscous and 
inertial regime for each configuration. Two configurations per porosity per Knudsen number 
have been considered, i.e. 24 randomly selected disordered configurations are studied. The 
modified model given by equations (9) and (12) has been used to calculate dynamic viscous 
and thermal permeabilities.  
Despite the effect of boundary slip on dynamic viscous and thermal permeabilities, their 
universal scaling nature remains intact. This means that the expressions proposed by Pride et 
al.6 and Lafarge et al.3,4 can still be used, provided that low frequency macroscopic parameters 
are calculated considering slip and temperature-jump boundary conditions. This provides a 
faster way of characterizing the acoustic behaviour comparing to the direct calculation.  
 



 

Figure 2: Dimensionless static viscous permeability (top) and thermal permeability (bottom) as function of 
porosity for Knudsen number values 0.05, 0.1 and 0.3 (left to right). 

  

Figure 3: Normalized dynamic viscous (left) and thermal (right) permeabilities. Direct calculation (real part 
in black circles and imaginary part in black squares) and modified (pjcal) semi-phenomenological model  

(real part in blue lines, imaginary part in red lines). 

Figure 4 shows mean value of attenuation coefficient (left) and normalized sound speed 
0( , ) /nc K cω  (right) as function of the ratio between the cylinders radius and the boundary layer 

thickness 0/ / 2vr rδ ρ ω ηΨ = =  for different porosities and Knudsen numbers. The mean value 
has been taken over 30 random configurations per porosity (4 values) per Knudsen number (3 
values). 



 
Figure 4: Mean value of attenuation coefficient (left) and sound speed (right) for porosities 0.65 (blue), 

0.75 (green), 0.85 (black) and 0.95 (red). Knudsen numbers 0.05nK =  (dashed line) and 0.3nK =  
(continuous line). 

 
Figure 5: Attenuation coefficient (left) and sound speed (right) ratios for porosities 0.65 to 0.95 (blue, 

green, black and red). Knudsen numbers 0.05nK =  (dashed line) and 0.3nK =  (continuous line). 

Attenuation coefficient is a monotonic increasing function of frequency. It has greater values for 
larger Knudsen numbers. In addition, it is larger for denser materials. Mean value of sound 
speed for 0.05nK =  is smaller than that for 0.3nK =  when 1Ψ << . This trend is more pronounced 
in the transition region, i.e. where viscous and inertial interactions are of the same order of 
magnitude. At high frequencies, sound speed tends to be the same asymptotic value, i.e. 

( ) 1/2

0
ranc α

−

∞ . This is due to the fact that the generated configurations possess the same spatial 

distribution and porosity, and also the inexistent slip influence at high frequencies. Regular 
configurations show the same trend for both attenuation coefficient and speed of sound. 
However, this is not shown here for the sake of brevity. See for example reference15. 
Figure 5 shows the ratio between the mean value of attenuation coefficient of random 
configurations and the attenuation coefficient of regular configuration (left). The ratio for sound 
speed is shown on the right side of this figure. The influence of the critical porosity is clearly 
identified in the region where 1Ψ << . Attenuation coefficient for random configurations is larger 



than that of regular ones when cφ φ<  for all Knudsen number values. The opposite trend is 
found when cφ φ> . 
The attenuation coefficient ratio becomes larger when Knudsen number diminishes for 
porosities 0.85φ <  and 1Ψ << . For higher porosity configurations ( 0.85φ > ), the opposite 
behaviour is observed at low frequencies, i.e. the deviation of the mean value of attenuation 
coefficient from that of the regular configurations is greater when Knudsen number increases. 
When ( )vr O δ≈ and Ψ  is slightly greater than one, the attenuation coefficient ratio increases 
when the Knudsen number rises. Therefore, the spatial distribution of the fibres plays an 
important role when the fibre radius is of the order of the viscous boundary layer thickness for 
confined materials. Speed of sound ratio exceeds the unit when cφ φ>  and 1Ψ <<  for all 
Knudsen number values. The sound speed ratio is smaller when the Knudsen number 
diminishes for porosities 0.85φ <  and 1Ψ << . When ( )vr O δ≈ and Ψ is slightly larger than one, 
the sound speed ratio shows a pronounced peak for larger Knudsen numbers and dense 
configurations. After this peak, the ratio starts decreasing for all Knudsen numbers and shows 
smaller values for more confined configurations. At the high-frequency limit, the configurations 

converge to the same value /reg ranα α∞ ∞ . This is independent of the scale. 

4. CONCLUSIONS 
A modified semi-phenomenological model has been proposed to investigate the 
slip/temperature-jump influence on acoustical properties of random microfibrous materials. The 
model has the same functional form as the original formulation3-7. However, the low frequency 
macroscopic parameters should be calculated considering slip and temperature-jump boundary 
conditions. This provides a faster way of characterizing the acoustic behaviour in comparison to 
the direct calculation. This is the central finding of this paper.  
A critical porosity has been identified. In a random array the mean value of viscous permeability 
is greater than that for a regular array for porosities larger than the critical one, cφ φ> . For 
denser arrays, cφ φ< , the opposite trend has been found. The same tendency and critical 
porosity value has been observed in non-confined random materials16. This suggests that the 
critical porosity is related to the spatial distribution and not to the scale. This critical porosity 
clearly determines the acoustic behaviour of random microfibrous materials at low frequencies 
(viscous regime), i.e. the attenuation coefficient for random configurations is larger than that of 
regular ones when cφ φ<  for all Knudsen number values. The opposite trend is found when 

cφ φ> . In a similar way, speed of sound in random materials is greater than that in regular 
configurations for porosities larger than cφ .The opposite behaviour is observed when cφ φ< . In 
general, the spatial distribution of the fibres plays an important role when the fibre radius is of 
the order of the viscous boundary layer thickness for sound propagation in confined space.   
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