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ABSTRACT

By using signals from force transducers at the terminations of a bowed string, it is possible to reconstruct the velocity
of the string at the bowing point and the force exerted on the string by the bow in the plane of the string's motion. The
theory of the reconstruction is presented, as well as some methods of realizing the theory in practice with sampled data.
Examples using simulated data and data from a bowed E string are given.

1. INTRODUCTION

From the beginning of serious analytical studies of the bowed string, the frictional force between bow hair and string
has been essumed 1o be a function only of the relative velocity of bow and hair, with coefficients of friction
representing the relation between the normal force and the frictional force, The only empirical justification for this
assumption has been a measurement Lazarus [1}, referenced by Cremer [2], that was not made under the dynamical
conditions of a bowed string. In this report, we describe a technique for inferring the transverse force the bow exerts on
the siring during bowed string motion. We describe the requirements for practical implementation of the theory; for
verification, we apply the technique lo a simulation. We also show an application to real data, and discuss the
experimental requirements for a reliable extraction of the frictional bow force.

2. THEORY

In cur experiment we attach force transducers to both ends of the string of a violin E string mounted on a monochord.
The transducers measure the AC component of the wransverse force exerted on them by the string. The force the nut
exerts on the string is given by

fnut (l)= Z ["‘l.l., (Nvt) + Tput (t) *Q, (Nvt)] = Z [‘6(t)+rnur. (t)] *U, (Nvt) (I)

where the bow is assumed to be at x=0, and u,(x,0) is the velocity of a disturbance at (x,1) traveling away from the
bow, towards the nut at x=N. Z is the string's characteristic or wave impedance; its reciprocal, Y=1/Z, is the string's
characteristic admittance. The rotation r+u means the convolution of the function r(t) with uft). The quantity . (1)
is the reflection function of the nut termination, and the reflected wave is the second term in eq. (1). &8(t) is the Dirac
delta function, and &(ty*u, (NA) = u, (N.). We will henceforth use the notation # for r(t}-6(1). A similar expression to
eq. (1) descibes the force exerted by the bridge.

Our objective is to write the force the bow exerts on the string in terms of the force given in eq. (1) and its equivalent at
the bridge. That force T for waves on the nut side of the bow is

£(0.0 =Z{ u, (0.t) - u_(0.)] = Z{u. (0.1} - u_(N.t- L)) (2)

where in eq. (2) u, and u_ are waves travelling away from and towards the bow, respectively, The speed of a
ransverse disturance on the string is 1aken to be c. A similar expression of course applies on the bridge side.  Equation
(1) can be solved for u, (N,L):
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w,(NU=Y Inv (2)* Enue (1) 3

where the cxpression [nv(r) indicates deconvolution: (1nv(f) *r)(1)=6{t). By using (3) and its equivalent at the bridge,
one may wrilc the total force as the sum of the contributions from waves on cach side of the bow as:

Y Poouw(=Inv (e b # [Enue (h 8L ) - rpge o £y (- LBl L)
+Inv (Yorg) *[fhrg (t+ 'Eég“) “Theg * fhrg("'%“)l L))

where L'y,.o i the reflection function at the bridge, B and N distances from bow to bridge and out, respectively, with
1=N+B, N={1-f)L, and B=fL. By a similar calculation the velocity of the string at the bow, View() = u () + u_{1),
from continuity, an equation that holds separately for the string on each side of the bow:

Z Voo (D =InV (e ) # [Enue (L2280 ) wrppe w £ (- L22EL L)
: =Inv (rk‘;rq ) *[fbrg (t+ %} + Lprg * fbrg ('-"%)] (5)

Equations (4) and (5) are the principal theoretical results of this investigation. They express one hitherto inaccessible
quantity, £p..(1), in terms of easily measurable quantities, the forces on transducers at the string terminations. The string
velocity at the bow, eq. (5), has long been measured by the standard magnetic induction technique, In the next section
we explare three  methotls for experimental reconstruction of the bow foree and velocity from the termination transducer
data.

3. EXPERIMENTAL REALIZATION

3.1 Basic Requirements.

The fundamental difference between the formulations of equations (4) end (5) and the actual attainment of a bow force
measurcment is that the data from the force transducers is necessarily sampled. The accuracy of delay and advance
times of the nut and bridge ferces, as expressed by their arguments, is subject 1o the quantization of time intervals as
determined by the sampling rate. In units of the sampling period, the expression SL/c is necessarily an integer; it is hatf
the round trip time from the bow, here assumed to be applied at a point, to the bridge and back. Thus 8 2L/c must be an
even integer, as most (149) 2L/c. The validity of the cxpressions (4) and (5) o represent bow force and velocity does in
fact depend with great sensitivity on the precision of the relative phase of reflection signals from the bridge and nut as
given by the arguments of the forces on the right hand sides of these expressions. In gentral one cannot ever expect,
given normal commercial sampling rates, that the timing conditions can both be satisfied. One possibility is the use of a
continucusly variable sampling rate, with the rate chosen to satisfy the timing criteria. Another possibility is resampling,
taking advantage of Nyquist's theorem that if cenain bandwidth criteria are satisfied the initial analog signal can be
reconstructed from the sampled data at any time whaisoever during the duration of the data set.  'We have used
resampling in an exploration of farce and veloctiy reconstryction presented below.

A second barrier to solution of equations (4) and (5) for real data lies in the evaluation of the deconvolution of £. There
arc at least three approaches:

(1) If the data are taken on a monochord, €. g., with an E string a5 in the glass bow investigations that stimulated the
present work [3], then it is tempting to assume that the reflection functions at bridge and nut  are delta functions:
r{t}=-p (1), where p $ 1. Then equations (4) and (5) become algebraic, since Inv (#) ={p - 1}"1.

(2) The deconvolution can be done by the standard Fourier transform technique.  Using the convolution theorem,
FTIInv(g) «f() = Fle)Mf(w), where FT (] indicates Fourier transform of the argument, and the capito) letters are the
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(2) The deconvolution can be done by the standard Fourier transform technique.  Using the convolution theorem,
FT[Inv(¥) «fl(t) = Fw)/R(w), where FT [.] indicates Fourier transform of the argument, and the capitol letters are the
Fourier transforms of their lower case equivalents. The inverse transform of the RHS then gives the required result in
the time domain.

(3) The circulant matrix method. The convolution, y, of two M-periodic lists, say p(i) and q(i), where q(i+M)=q(i)
and p(i+M)=p(i), can be written

(n} Z:\ i} p q (n'i)s nﬂ,l,u.M.-l. (6)

or, in vector notation, y=P.q, where P is a "circulant" matrix, constructed as follows: The firstrow is {p(0), p(M-1),
p(M-2),....p(1)}. Subsequent rows are manufactured by shifting each element one place to the right with wrap-around,
so that the first element of the second row, for example, is p(1). (See reference [4)]). The inverse of P is readily
calculated numerically. All that is necessary to implement method (3) is 1o choose a section of the data of length such
that the last entry ties seamlessly onto the first, thus imposing a pseudo-periodicity on the bridge and nut transducer
data, although they may in fact not be really periodic at all. Obviously, the more nearly periodic it is, the better the
results will approximate the true (but unknown) bow force. That goal is better attained for a segment of the real data if
the data is resampled so that each the timing criteria discussed above are met. The goal here is that each period have an
integral number of samples, and particularly that a selection of several periods have an integral number of samples. A
practical way to achieve this is to shift the selected subset of the data by half the data's length so that any discontinuities
from failure to impose periodic boundary conditions show up more visibly in the middle of the plot of the shifted data
set. The required delays must be accomplished by shifting to left or right with wrap-around.

In fact, methods (2) and (3) are basically the same, since the Discrete Fourier transform method implicitly imposes a
periodicity M on a data set excerpt of length M. If the data set is carefully constructed with periodic boundary
conditions, methods (2) and (3) yield identical results. In both cases, if the various requiremenis of timing and pseudo-
periodicity are not adhered to, the results are completely spurious.

3.2 Reconstruction of a simulation.

Figure | shows the bow force (dark lines) and the velocity at the bow of a simple simulation, done without
consideration of rotational motion. The units of the forces are the same as velocity because the simulation used reduced
units: 2Z=1. The bow and bridge reflection functions were identical Gaussian functions with their maxima four
samples beyond their inception, so the period of oscillation was longer than the ostensible length, N+B, of the string.
Figure 2 shows the bridge force and nut force waveforms - waveforms that are not normally generated in simulations.
The simulation had achieved Helmholtz motion, but not complete periodicity. Figure 3 is the reconstructed version of
Fig. 1, using the waveforms of Fig. 2, Figure 4 shows superimposed three quantities: the curve is the E(v) function, a
hyperbola, used for the simulation. The light points are (v,F(v)) obtained from the simulation. Note they fall exactly
of F(v). (The complete force curve of course would include a vertical line at abscissa position Vo =1, the bowing
velocity). The dark points are from the reconstruction, as described above, using the circulant matrix method.
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Figure 1: Bow force (dark) and bow velocity (light) from a simulation.

Figure 2. Bridge (dark) and nut (light) waveforms from simulation. Horizontal axis in units of sample period, vertical
axis units same as figure 1.

Figure 3: Reconstructed force and velocity waveforms. Same axes s in figure 1.

s ol

S

Figure 4. Force vs. velocity, Curve is F(v) in slipping region. Light points as calculated by simulation. Dark points as
calculated by reconstruction, from Fig, 2.

We note that the reconstruction does not  duplicate the waveforms exactly (compare figures | and 3), and does not
exactly reproduce the assumed frictional force during slipping (figure 4). We believe these errors arc the inevitable
result of imposing periodicity on waveforms, in this case on six periods of the oscillation, that are not exactly periodic.

Other lessons arc learned by trying to reproduce a simulated wavelorm. If the iming requirements are not met in the
reconstruction, the bow force during slipping can vary from decreasing with time to increasing with time, depending on

46 Proc.l.O.A. Vol 19 Part 5 (1997)




Proceedings of the Institute of Acoustics

MEASUREMENT OF BOW FORCE

the direction of the timing error. The result is an F(v) vs. v plot that is an open loop, with the time-ordering of the
points traversing the loop clockwise or counterclockwise, depending on the sign of the timing error. An error of a
single sampling peried in the specification of the travel time from bridge to bow, or nut to bow, results in an open loop.

Figure 5 shows an attempt to reconstruct bridge force and velocity from real data, taken with a glass bow on an E string
on a monochord, in order to measure the frictional force during slipping as a function of velocity. Bowing fractional
distance § was about 1/6, the bowing velocity was 22 cm/s, and vertical bow force about 0.5 N. The reflection
functions at nut and bridge and transducer calibrations were obtained by a separate experiment, in which the string was
plucked at midpoint by looping a very thin copper wire around the string and pulling it to the side until it breaks.. The
approximate axes scales in the figure are derived from these measurements. The delays correspond to the correct value
of § for these data and their sum adds to half the resampled period of 72 samples.

Figure 5. Reconstructed velocity at bow (light) and bow force (dark) from E string bowed with rosined glass bow.
Abscissa is in units of the (re)sampling period, 21 s, the ordinate in cm/s for string velocity, and grams force for the
bow force. .

Other combinations of delays adding to the correct period gave similar bow forces. but rather implausible velocity
during sticking. It would be very desirable to measure the velocity at the bow as well as the force transducer signals,
but the ability to measure three signals is not yet available to us. Figure 6 shows F(v) vs. v. Note that since the
transducers record only the AC component, the average reconstructed bow force is zero. The loop during slipping is
trasversed clockwise in ime.

Lacking the necessary additional velocity data, we cannot set the delay between the transducers with confidence. Thus
the openness of the loop in the F(v) vs. v plot may be an artifact. Later studies will include measurement of the velocity
of the string, a quantity that may also reconstructed (as in figures 1 and 3), using the same functions of the bridge and
nut forces that are used in generating the force at the bow (compare equations (4) and (5). The additional experimental
information will help remove the uncertainty in setting the delays.
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Figure 6. F(v) vs. v, data same as fig. 5. Velocity units in cm/s, force units in grams force, AC component only.
4. CONCLUSION

We have developed a method to reconstruct the force exerted on the string by the bow and the velocity of the string at
the bow, using force transducers at the string terminations. The method requires knowledge of the propagation delays
from bow to bridge and nut. With the aid of a measurement of the string velocity at the bowing point we expect that we
can reconstruct the friction force as a function of relative bow-string velocity, a property essential to proper modelling
of violin acoustics.
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