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1. ABSTRACT

The spectral differences between examples of a particular phoneme uttered by differeat individuals may
in part be modelled ag a smooth non-linear warping of the frequency axis. This paper describes a speech
recognition system in which the peak frequencies of the analysis filter bank are optimised for each speaker
instead of being fixed at predetermined mel-spaced increments as is usually the case. In the proposed sys-
tem, the outputs from the Speaker-specific filter bank are converted to cepstrum coefficieats to form the
parameter vector for a conventional speaker-independent hidden Markov model recogniser. The appro-
priate filter bank frequencies to use for a new speaker are determined by means of a gradient desceat
algorithm that minimises the errors in a phoneme classification task. The use of such speaker-dependent
frequency warping is applied to a phoneme classification experiment using a subset of the TIMIT database.
The application of this technique to speaker-adaptive recognition systems is also discussed.

2. INTRODUCTION

Differences between speakers generally cause speaker-independent recognition systems to have lower
performance than speaker-dependent systems. Many researchers have proposed ways of reducing this
performance gap by compensating for these inter-speaker differences during recognition. The proposed
compensation techniques generally follow one of two approaches. In the finst approach, an adaptive trans-
formation is applied to a set of speaker-independent models to improve their £t to the input speech. In
the second approach, a normalising transformation iz applied to the input speech during both training and
recognition. The procedures described in this paper follow the second of these approaches.

One of the significant sources of inter-speaker variability erises from differences in vocal tract length.
Acoustic theory indicates that, in the absence of any compensation by the speakes, a linear scaling of the
vocal trect dimensions will cesult in a linear scaling of formant frequencies. Accordingly, a number of
papers have suggested warping the frequency scale of the input speech in a linear [1), piecewise linear (2]
or non-linear (3] manner. In each case the form of the warping function is fixed in advance and a single
parameter is varied to compensate for inter-speaker differences.

The normalising procedure described in this paper differs from the previous approaches in twa ways: it

makes no prior assumptions about the shape of the warping function and it is determined by minimising the
error in a phoneme classification task rather than using the more common maximum likelihood criterion,
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3. SPEECH RECOGNISER STRUCTURE

‘The speech recogniser used in these experinents has a conventional structure in which input speech frames
are converted to cepstral parameters which form the input of a hidden Markov model recogniser. '

In the front end of the recogniser, input speech is divided into overlapping 16ms frames which are win-
dowed and converted into the frequency domain by a discrete Fourier transform. The resultant power
spectrum is then filtered by a set of bandpass filters and converted to the cepstral domain by a discrete
cosine transform (DCT). This process may be represented in matrix form as

o= T log(H sgr(FWx}) )

in whichlihe column vectors x and o represent the input speech frame and the cepstral coefficients, and
the matrices W, F, H end T represent the windowing, FFT, filter bank and DCT. The functions log(} and
sqr() denote element by elemeat log and square functions.

" In most recognisers, the matrix H defines a fixed set of mel-spaced bandpass filters whose response in the
power spectral domain has an asymmetric trisngular shape. The distinctive feature of the work presented
in this paper is that the centre frequencies of the filters defined by H are chosen for each speaker to
optimise recognition performance.

For reasans of oompumnonal and analytical convenience, we have used raised cosine rather than triangular
filters. As with the conventional mel filter bank [4), filters must be asymmetric to ensure that each column
of H sums to unity. If the filter bank centre frequencies are denoted by the vector b, the matrix H may be
defined by:

[ 4+ 4 cos(n (1~ B/ (0K} - bik-1)))
for Bk-11< 1 <bfF

Bk =1 4+ cos(n (1~ bIk)/(ble+1] - blAD)
for blk] <1 <bik+1)

E B & & R & F B

[]

Lo for 1<blk=1) or 1> blk+1)]
@
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4, MINIMUM CLASSIFICATION ERROR

The optimisation of the error count of a phoneme classification task was first introduced by {5, 6] as a
new discriminative training procedure. Recently, the minimum classification error method (MCE) was
introduced as a new hidden Markov model (HMM) training algorithm based on the generaliced proba-
bilistic descent (GPD) method [7, 8, 9). In this method, the classification exror cost function is defined

a5 a function of the HMM pammeters. Then, the gradient of the cost function is calculated and a prob-
abilistic descent method is applied in order to find the optimal HMM parameters. In our work, we have
expressed the classification error cost function as a function of the filter bank peak frequencies but have
used a conventional gradient descent procedure to find optimal peak frequencies for a particular speaker.
Let O = {o},0},...,0%} denote the /-th training sequence in the cepstral domain, where 7; is the number

of frames. Bach training sequence belongs 1o a class k = {1,2,...,K}, modelled by a HMM Ay, Ay € A
where A = {A1,Az,...,Ax} fepresents the whole set of HMMs. Let the observation density of an HMM
be Ganssien with mean g and diagonal covariance C, and the transition probabilities be stored in matrix a. o
The formulation of the cost function consists of four functions:

4.1 Discriminant function.
This fanction is a measure of the distance between an input training sequence and the corresponding HMM
from list A. ‘The negative log-likelihood score is chosen in our study.

1 ' =1 T
gt(th) = %(% 2}041.) _of")!' s[t)(“';(r) _oil,) - mil Log agy st +% §‘°3(dd(c§(t)))) 3)

whege, S(t) represents the alignment sequence issued from the Viterbi alignment, and s and C* are the
HMM output probability parameters of class k. The constant term has been omitted.

4.2 Misclassification meastire.
The misclassification function measures the degree of confusion between the correct class and all other
competing classes.
1 1
4(0,A) = 21(0',A) + = log( s T, exp(—ng (0',A))) @
. n K-13 .

where k is the class to which O belongs. When 1) — oo, this becomes:
d(0',A) = £(0',A) - ming;(0',A) &)
which is the distance of the input observation between the comect model and the best incorrect madel

{this simplification is applied in our research). Clearly, a negative value of 4(0/, A) indicates a comect
classification and a positive value indicates a misclassification.
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4.3 Smooth loss function.

This function weights the misclassification measure using a sigmoid function. When an input is correctly
classified (4(0¢,A) << 0), the weight (or penalty) will be near 0. Likewise, a misclassified input will
have a near unity weight. )

 MOLM = (1 +ank(BA(OA)) B0 ®
As P = 2o, the sigmoid functiori tends to a step function,
4.4 Cost function,
The cost function is es follows:
D(A) = 27(0‘ A) Y}
D(A) represents a measure of the misclassification of the given observation sequences (0'...0) for

the entire classifier A. When the discriminant function is the negative log-likelihood score and the loss
function is & step function, this cost function is precisely the exror rate.

5. FILTER BANK AND HMM OPTIMISATION

The training phase of our speaker normalisexd antomatic speech recogniser (ASR) jointly optimises & set
of speaker-specific filter banks and the phoneme models within the classifier. The test phase derives the
optimal filter bank of a new speaker for the fixed classifier estimated during the training phase. In both
phases, the filter bank peak frequencies are derived by minimising the previously described cost function
along itz gradient.

5.1 Gradient Analysis.
The cost function evaluated for a specific speaker is a non linear function of the vector of peak frequencies.
The gradient VD is defined by differeatiating the cost function D(A} with respect to each peak frequency:
8D 8D 8D 7 '
Bo0]" B6(1)" " SoNpar + 1]

where each element of the gradient vector is calculated by applying the chain rule:

VD= ®)

B~ 3y 5 50 F-3 7] ®
‘The above expression includes the derivative of the toss function,

WO A) 1 :
8 - 1+ coh(Zpd(0F, ) a0
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This bell shaped derivative function directs the gradient search by concentrating on the improvement
of training tokens near the decision threshold and leaving out well recognised or hopelessly recognised
tokens.

The differentiation of the cost with respect to one peak frequency, expressed by (9), is easily obtained.
However, the detailed calculation is too long to be presented in this paper.

5.2 Test Phase.

The filter bank peak frequencies of a new speaker are determined by applying a steepest descent algorithm
to the cost function. Each iteration of this algorithm vpdates the peak frequencies by a small amount
along the gradient dicection. Since the filter bank varies after each iteration, it is necessary to recalculate
the Viterbi alignment of each test sequence and recvaluate the cost function. The following itcrative
procedure is applied:

1. Determine the most probable incotrect model for each training token

2. Evaluate the objective function and its derivative with respect to each element of the speaker’s
filter bank.

3, Adjust the filter bank in the direction that will decrease the objective function.

4. Loop to step 2 a number of times (e.g. 2)

5. Loop to step | until convergence occurs

5.3 Training Phase.

In the training phase, the filter banks of all training speakers are optimised and speaker-independent
phoneme models are estimated. The search for the optimal front end is performed by applying the test
phase iterative procedure for all training speakers at the same time. In order to find the optimal classifier
an additional loop is added to the previous process, resulting in the following iterative procedure:

1. Initinlise all filter banks
2. Use standard HMM training to create phoneme models
3. For each speaker:
4. Determine the most probable incorrect model for each training token
5. Evaluate the objective function and its derivative with respect to each element of the speaker’s
filter bank.
6. Adjust the filter bank in the direction that will decrease the objective function.
7. Loop to step 5 a number of times (e.g. 2)
8. Loop to step 4 a number of times (¢.g. 4).
9. Loop to step 2 until convergence occurs.
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6. EXPERIMENT

The technique presented in this paper has been tested on a phonems classification experiment of 49 speak-
ers of the TIMIT database. The first dialect region dr7 contains the speech data of 38 speakers for training
purpose and 11 speakers for testing the system. In the training phase, eight sentences are used per speaker
to derive the optimal front end and the classifier models. In the test phase (speaker-dependent recognition),
cight sentences are used per speaker to derive the optimal front end for a fixed classifier. In each phase,
the mecognition rate is derived from the same 8 sentences nsed during the optimisation stage.

The speech waveform is segmeated into 16 ms frames every 8 ms and passed through a preemphasis
filter, A 256 point discrete Fourier transform is subsequently performed. The resulting spectrum frame is
normalised before being filtered through the speaker-specific filter bank which contains 12 mised cosine
bandpass filters. A 12 to 10 point discrete cosine transform is applied to the log energy output of the filters
in order to give a 10 cepstrum coefficient vector.

The pattern matching stage is implemented by 48, three-state; context-independent, left-to-right hidden
Markov models representing the phoneme vocabulary. The state output probability distribution consists of
& single Gaussian mixture with diagonal variance. The models are trained using the maximum likelihood
objective function by applying itetations of the Baum-Welch algorithm on isolated models.

The recognition rate of a phoneme classification task is estimated st each iteration of the training proce-
dure. The test procedure is performed on the speaker-independent models generated afier each iteration of
the training procedure. The resulting filter banks of the test speakers are used to calculate the recognition
rate of a phoneme classification task performed on the test data.

7. RESULTS AND DISCUSSION

The results of the phoneme classification task after each iteration of the adaptation algorithm are shown
in figure 1(a). The top curve represents the evolution of the recognition rate of the training set of speakers
whereas the bottom curve represents the test ser. The recognition rate of both training and test sets im-
proves steadily. After 34 iterations, the recognition rate increased from 36.34% to 41.58%, a reduction in
the exvor rate of 8%. Generally, the iterative adaptation improves recognition and seems to converge. How-
ever, sometimes the update on the HMM parameters resnlts in a sharp rise in the cost function for specific
speakers. This results in & drop in the general recognition rate s seen in figure 1(a). The speaker-specific
cost function requires a few iterations to retum to jts normal decreasing course.

The starting point of our search for the optimal speaker-specific filter bank is the mel-spaced filter bank.
The peak frequencies of two filter banks after optimisation are shown in figure 1(b). It is clear that these
optimal filter banks are near the mel scale and a test can be carried out to establish if a different starting
point will give different optimised filter banks.
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Figure 1: Filter bank optimisation of training and test speakers

8. CONCLUSIONS

We have proposed a technique based on a speaker-specific transformation that improved the recognition
rate of a phoneme classification task. The novel aspect of our approach is 10 use the filter bank 2s &
speaker-specific transformation. The MCE optimising criterion was used as a cost function of a gradient
descent method in order to find the optimal peak frequencies. The front end and classifier of our ASR
were optimised iteratively by applying the gradient descent, This adaptation algorithm was tested on a
subset of the TIMIT database resulting in a 8% reduction of the error rate.

The proposed technique improves the recognition rate of a speaker-dependent transformation / speaker-
independent classifier ASR. The filter banks of the test speakers were optimised by a gradient descent
method as explained in section 5. The next step of the research currently being undertaken is to implement
an unsupervised speaker adaptation. In such a system, the training phase builds a space of filter banks and
a space of speaker characteristics derived from the speech data of training speakers. A mapping between
both spaces is created for its use in the test phase. The test phase of the new system involves extracting
the new speaker's characteristics and using a predetermined mapping that selects the optimal filter bank
in the space of filter banks.

In order to tackle the local minimum burden of the the steepest descent method, an altemnative optimisation
technique is currently being examined in which the peak frequencies are optimised by means of a genetic
algorithm. In cur environment, the genetic algorithm has thres advantages: the global minimum is found,
the front end and the classifier are optimised simultaneously rather than sequentially and it can be applied
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to any recognition task including phoneme classification, whole-word or sub-word continuous speech
recognition. Early experiments have shown encouraging results.
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