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1. INTRODUCTION

The boundary element method (BEM) is an effective method for obtaining accurate solutions to
the standard Helmholtz equation governing the propagation, reflection, and scattering of monofre-
quency acoustic anes in a homogeneous atmosphere. The method is well-developed and has a large
literature for problems of scattering by obstacles of finite size (see e.g. [17,41]), and is practicable
in terms of computational resources required provided the ratio of the diameter of the scattering
obstacle to the wavelength is not too large.

The first application in outdoor sound propagation appears to be the boundary element simu-
lations of the acoustic field around standard Vertical screens on a flat rigid ground surface reported
by Daumas [22]. A major application to date has been to the simulation of the performance of
outdoor noise barriers of arbitrary cross-section: its use in this context was introduced by Seznec
[56] and is developed in [7,9,33,50]. Boundary element methods have also been proposed for inves-
tigations of effects of inhomogeneous ground cover [6,29] and for predicting noise propagation from
out of cuttings [14,49]. I

The advantages and disadvantages of the method will become clearer in the course of the paper. To
date, it is only really effective for outdoor ground surfaces which are essentially one-dimensional,
meaning that there is some horizontal Vector in which direction there is no change in surface e]-
evation or in acoustical properties. Further, it is limited in practice to modelling homogeneous
quiescent atmospheres, so that wind and temperature gradient effects and scattering due to atmo-
spheric turbulence are not modelled. The method is best adapted to situations where the ground
is basically flat and homogenous with onlylocalised departures from this (e.g. strips of a different
ground type, noise barriers, cuttings, etc).

Within these limitations, since it is solving the governing wave equation to an accuracy only limited
by the fineness of the discretisation of the boundary employed, it accurately models the acoustic
performance of noise barriers and ground surfaces of arbitrary cross-sectional complexity and arbi-
trary variations in absorptch properties, and this is its great advantage over competing methods
such as rayvtracing techniques [55] and parabolic equation methods [53], whose ability to treat.
complex diffraction and nnlltiplo scattering effects is strictly limited,

Thus, in recent years, boundary clomenl methods have been employed to predict traffic nnisiI

propagation over inhomogeneous flat terrain [32], the performance of a range of novel noise bar-
rier designs [IS—20,34,515], the combined efforts of porous asphalt surfacing and barriers on roml
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traffic noise [60], and the influence of the design of balconies on noise levels in tall buildings [36].
Boundary element methods have also played an important role in the validation of other, simpler
but approximate methods for outdoor noise calculations [35,44,55].

In Section 2 we describe in more detail a class of outdoor noise problems that the boundary element
method is suitable for, and the mathematical formulation. We also outline a method, proposed and
implemented in the outdoor propagation context recently by Duhamel [25,55], by which the com-
putationally expensive 3D problem of scattering of a spherical wave by a barrier of infinite length is
reduced to a sequence of ‘ZD problems by a partial Fourier transformation. The boundary element
method is a numerical solution procedure applied to a reformulation of the Helmholtz equation
as an integral equation on the boundary. In Section 3 we review the available integral equation
formulations: the numerical solution procedures are discussed in Section 4. Some comparisons with
experimental results are presented in Section 5, and applications of the method to outdoor noise
problems, in particular to trafi‘lc noise prediction, are reviewed in Section 7. In the concluding
section we briefly mention some prospects for the further development of the method, in particular
the possibilities of modelling arbitrary ground surface geometries and atmospheric effects.

2. PROBLEM FORMULATION

We adopt throughout a right-handed Cartesian coordinate system Ozyz with the y—axis vertically
upwards, and restrict consideration to boundaries which are essentially onedimensional, with no
variation in geometry or in acoustical properties in the z-direction. For definiteness we suppose,
at this stage, that the excitation is due to a single (monopole) point source (an incident spherical
wave) or due to an infinite coherent line source (incident cylindrical wave case). For the line source
We assume that the ‘Iine‘ is parallel to the z—axis. We work throughout in the frequency domain,
carrying out our calculations in the first instance for monofrequency sources with time dependence
e‘l‘“. Figure 1, a cross-section through the ground geometry, shows the most general situation we
consider. The noise emanates from the source at 5 and is reflected and scattered by the boundary
P, which includes the ground surface itself and any man-made structures, e.g. noise barriers. The
boundary 1‘ may, as shown in the figure, have more than one component, consisting of a single
infinite arc plus one or more closed curves above this, representing, for example, noise barrier ele-
ments. The connected infinite two-dimensional region above I‘ we denote throughout by D.

We note at this stage that we consider the coherent line source case not because such sources
are an exact model of line sources occuring in practice (e.g. road traffic streams), but because the
mathematical problem becomes two-dimensional: the acoustic pressure fluctuation p depends only
on the z and y coordinates of position.

Assuming a homogeneous, quiescent atmosphere (Le. neglecting wind, temperature, and turbulence
efl'ects) the pressure p satisfies, in D, the Helmholtz equation with delta function inhomogeneity at
the source position,

Ap+k2P=6s. (1)
where 5 is the source position, A = (72/01:: + (92/3112 + 01/322 is the Laplacian, and k: = u/r is
the wavenumber, with c the speed of sound, We restrict consideration throughout to boundaries
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I

Figure l: The geometry considered

which are locally reacting, ire. well-modelled by the impedance boundary condition

0ES = Map (2)

on I‘, where B/Bn denotes the derivative in the normal direction, directed out of D, and B is the

boundary admittance, normalised to that of air, which is, in general, a function of both frequency

and position on I“ with [i = 0 on perfectly rigid surfaces.

We do not have the space here to discuss specific expressions for [i for the variety of outdoor

surfaces (though see Section 6). But note that any physically appropriate impedance model satis»

ties that 9M 2 0 (to ensure the energy flow is into not out of the surface), and other constraints

discussed in [37].

To complete the problem formulation we need to express mathematically the idea that the so-

lution p we are seeking should be a wave travelling outwards from the source. In particular, we

expect at least the decay associated with cylindrical or spherical spreading, i.e. that

r("‘1)/7p remains bounded (3)

as r —v 00. where. in the line source, two-dimensional case, n = 2 and r is distance from the line

2: = y = 0, while, in the point source, 3D case, n = 3 and r is distance form the origin. Furthermore,

we impose the Sommerfeld radiation condition, that c

An-W’ (% — ikp) —» o (4)

asr—roo.

In the case when the boundary is not present. i.e. in free space, the above problem can be solved

exactly. For a point source,

Pam

I' = —m, (5)
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where R is the distance from the source. For a line source,

1'p = —3Hi"(kll), (6)
where Hg” is the Hankel function of the first kind of order zero. In the case when the boundary is
present, (5) and (6) are the spherical and cylindrical waves, respectively, incident on the boundary 1‘.

It was noted above that the line source/cylindrical wave is more straightforward mathematically:
the problem to be solved is two-dimensional. As pointed out in the context of outdoor propagation
recently by Dnhamel [25,55], we can reduce the three-dimensional case of an incident spherical
wave to the solution of a collection of 2D problems by representing the incident spherical wave as
a linear combination of cylindrical waves. Precisely, we have that [25]

0'“ 1' “Hm k R inxd 7—m——g/_w Dune a, ()
where R is the distance from source at (zo,yo,0) to the receiver at (z,y,z), k, = \lk2 — M, with
k, = Na“ — 1:5 when |o| > k, and R2 = ((zi:--:r:o)2+(y—yn)“)‘/2 is the distance between the source
and receiver positions projected onto the plane 1 = 0, Introducing two-dimensional position vectors
r0 = (10,!(0), specifying the source position, and r = (2,11), specifying the first two components of
the receiver position, we note that R; = Ir — rol. For an incident field

_iflé')(kaRz)e‘°" = —;—H,S”(Ic,|r— “new

we look for a reflected/scattered field in the form P"'(r)e‘"', and this satisfies the Helmholtz
equation (1) if and only if

m) = —§Hé"(kalr — ran + Mr) (8)
satisfies that

AP, + kin, = 6,, (9)

Similarly, the impedance boundary condition (2) is satisfied if and only if

% = man, (10)
on I‘, where [in = kafi/k. Further, P"‘(r)e‘"’ is an outwards travelling wave if and only if Pa
satisfies (3) and (4), but with k replaced by kn in (4), that is we require that

r‘flPH remains bounded (11)

as r —u oo, where r is distance from the line I = y = 0, and that

r”: (% .- ikaP") —. 0 (12)
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as 1' —v oo. We note‘that this method of procedure therefore reduces the problem of an incident
spherical wave to the solution of equations (9)-(12), which are exactly the equations (1)-(4) to be
solved in the case ofan incident cylindrical wave.

Once P,(r)e-"", the total field corresponding to incident field —(i/4)H3”(k,|r— “new, has been
computed for each a, we can calculate the pressure p at an arbitrary point (z,y,z) for a point
source at (amt/0,0) by integrating over o> as in (7), to give that

n = no, u, z)= % :° Panama. (13)

Frequently, we are interested in the total noise exposure due to a point source moving at uniform
speed along the straight line 2 = :3, y = yo. Since, equivalently, we may move the receiver, this
noise exposure (noise level due to an incoherent line source along a: = 20, y = 3m) is

{we

1:] |p(:,y,z)|?az. (14)

Noting that, from (13), p(z, y, z) is related to Pa(r) by Fourier transformation, we have by Parseval‘s
theorem that

1 +oo
J = fi/m |P,,(r)|’da. (15)

We usually wish to calculate noise levels associated with broad band sources, and are given source

spectra which enable us tocompute noise levels (SPL, L”) in each frequency band in standard
conditions, e.g. in the free field. Then what is needed is to compute the excess attenuation, the
additional attenuation due to the ground surface. For the point source or coherent line source cases
this additional reduction in SPL is

EA = ‘2010EiolP/PFI, (15)

where pp is the pressure in free field conditions, given by or (6). In the case of sources moving
at uniform speed along the line 2 = :0, y : yo, (the incoherent line source case), the integral (14)
is proportional to Law and the reduction in L“, due to the ground surface is

EA = —10|ogw(J/JF), (17)

where Jp = l/(lsll’flz) is the Value ofJ in the free field situation.

In practice the infinite range of integration in (13) and (15) is truncated and then the integrals
are approximated by numerical integration methods which replace the integrals of (13) and (15)
by finite but rather large sums (see [25,55] for proposed methods for this) Thus the problem of

spherical wave scattering at a single wavenumber It is replaced with that of solving many 2D cylin-
drical wave scattering problems for different wavenumbers Isa. With the possibility of using this
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method in mind for the point source case. we concentrate in the next three sections on the solution

of the cylindrical wave scattering problem (1H4) (with n = 2), remembering that in applying
these techniques to solving (9)-(12) we will wish to replace 1: by k0,, with kc. > 0 for |u| < 1:, but
[cu = Na“ — It” being pure imaginary for |o| > k.

3. BOUNDARY INTEGRAL EQUATION FORMULATIONS

A boundary integral equation (BIE) formulation for the problem consisting of equations
can be obtained as follows. (As indicated in the previous section, it will be enough to consider the

two-dimensional case n = 2 oi'an incident cylindrical wave).

The BIE formulation depends on knowledge of exact solutions to the specified problem (1)-(4)

for at least one special geometry. The simplest situation for which a solution is available is the case

when the boundary is absent altogethr, i.e. the free field case, when the exact solution is given by

(6) Let 60-, to) denote this solution, ire.

Mun.) = -41'Hi”(k|r-rol). we m. (18)
Then a boundary integral equation formulation can be derived as follows. Apply Green’s second

theorem [17] to the functions u and 0, defined by “(1'5) = p[r.), v(r.) = (Mn, r), in the region E
consisting of that part of D contained in a large circle of radius R.) centred on the origin, excluding
small circles of radius z surrounding the source position to, located somewhere in D, and the

receiver position 1‘, with r 7! to some point in D or on P. Then, since the region E excludes the

singularity in u at to and in u at r, we have that An + kzu = Au + kzv = Din E so that

60 Bu[6E (ua—ua)ds—0, (19)

s(r)u(r) = v(ro) + A (ug—Z — 03—?) ds (20)

where

I, {or r in D,

((r) ={ fl[r)/1r, for r on F, (21)

where 9(1') denotes the interior angle in D at r (= 7r if r is smooth at r). Utilising the impedance

boundary condition (2), we obtain a first BIE formulation, that

r'N>(r,,, r)
0M”)

emnr) = mm.) + [F ( - ikfl(r-)¢(ra,r))p(rs)ds(ra)~ (22)

Equation (22), often referred to as the Helmholtz integral equation, expresses p at an arbitrary

position in the region D in terms of Values of p on the boundary F aloner Once the values of the
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pressure p on the boundary I‘ are known, exactly or approximately, the pressure can, in principle,
be computed at any point off the boundary, by approximating the integral in (22) by a suitable
numerical integration rule,

Equation (22) holds, in particular, when r is on F and, for these values of r, is a boundary in-
tegral equation for the unknown pressure on the boundary 1‘, This equation is solVEd numerically
as the first stage in the boundary integml equation method and the values of pressure on I‘ computed
are used in a. second stage to calculate pressure wlues at whichever positions are of interest off the
boundary,

When we come to discuss numerical implementation in the next section we will see that it

   A B I
Figure 2: A local perturbation of a homogeneous plane. The surfaces are assumed to have the
same constant admittance fig, exoept for a localised part 7, which may consist of one or more noise
barriers and part of the ground surface (AB in this case).

can be computationally very expensive to have the integral in (22) extend over the whole infi-
nite boundary I‘. This can be avoided in cases where the ground is basically flat and uniform in
surface impedance except for localised features. In particular, consider a situation such as that
shown in Figure 2, where, sufficiently far away from the source, the boundary F coincides with the
line 3] = 0. Assume also that, again sufficiently far away from the source, the boundary has a con-
stant admittance EC, and that any deviations from the line y = 0 are into the upper half-plane y > 0.

In the special case when the whole boundary mincides with the line y = 0 and has admittance
fin we have propagation above a homogeneous impedance plane and explicit expressions for the
pressure can be given. Let. Gg‘(r, r0) denote the pressure at i: when the source is at to in this case.
Then, explicitly [11],

Guns) = —§H.S”<klr — rol) — gamb— rial) + Palm), (2:)
where 1',“ = (In, —yo) is the image of the source and

a new -a+)
Pa.(r.rn)= a“: f""’e‘"‘vmdt+We"cie"“"fim>. M 1. (24)

 

with p : klr — r3], (2+ = l+flccosflu — \/1— fifsinfla, 90 = arccos((y+ yu)/|r — ral) the angle of
incidence, erfc the complementary error function, and

(L) —_ fle‘ffionfla 1+1: _ 1-..]. N
9 — 1—2-(z2_2i(I+B.essan)i—(p,+mgn)2) 2 “52mm”.
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Note that all the complex square roots in the above expressions are to be taken with non-negative
real part.

Using this explicit solution we can proceed identically as in the derivation of (20), to find that
(20) holds with 11 redefined as u(r) = Gp((l',l'u), provided we replace ((r) by 11(1'), defined by

1. lll' in D,
170') = n(Wm if r = (1.100“ 1‘, y > 0. (25)

2“(fl/1r, if r = (my) on I" y = 0-

Utilising the impedance condition (2). and also the impedance boundary condition staisfied by Get,
we find that the integral over 1" reduces to one over 7, where 7 consists of those parts of I‘ on which
fl 9! H, or which lie above y = 0‘ Explicitly, we find that [56]

36‘3er r)
anus)

this equation used first for numerical comuptation in Seznec [56] (but only for B: = 0) and more
recently in [7,9,33,50].

71(I‘)P(r) = Gum) + - ikfi(r.)GaL(l'-,r) 11(I'al'i-‘(rab (26)
‘V

Occasionally we are interested in the case of propagation cver flat ground of variable acoustic
type, that is we wish to consider the case when I‘ coincides with the line 3/ = 0. Then, in view of
the impedance condition satisfied by an on 1", (26) simplifies to

Pl?) = Gait. to) + ik [,(fic — 5(rs))Ga¢(r-,r)r(rs)33(rs)- (27)

‘At this point we note that the basic Helmholtz integral equation (26) suffers from the problem

   
A B 2

Figure 3: Case of a single mound/noise barrier and the interior problem which determines unique-
ness in this case.

that there may exist wavenumbers k at which it has more than one solution, only one of which is
physically correct, (The special case of equation (27) does not have this problem of non-uniqueness,
as shown in [13].) Consider first the case shown in Figure 3 in which the boundary is flat, except
for a single mound/noise barrier bounded above by the arc '1. In this case the integral equation has
more than one solution if and only if the problem in the bounded region underneath the barrier,

y
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shown in Figure 3, has a resonant mode. This interior problem consists of the boundary condition
p = 0 on '1 and the impedance condition Bp/Bn = ilcficp on the part of the line 1/ = 0 inside the
barrier. If 9213: > 0 (the ground is energy-absorbing) then this interior problem has no resonant
modes. If the barrier is on rigid ground ((3, = 0) then this interior problem has resonant modes at
an unbounded infinite sequence of positive wavenumbers, called the irregular wavenumbers for the
integral equation (26). If there is more than one barrier, as in Figure 2, then there is an infinite
sequence of irregular wavenumbers associated with each barrier, and if, as in Figure 1, there are
components of the boundary I‘ which are closed curves, disconnected from the ground surface, then
there are irregular wavenumbers also associated with each of these components, these being the
resonant modes for the Helmholtz. equation in the component with boundary condition 1: = 0.

If k is exactly equal to one of these irregular wavenumbers then the integral equation (26) has
more than one solution. There are also difficulties when numerical solution methods are employed
if Isis very close to an irregular wavenumber, discussed in M. 7

Compared to equation (22), when computing pressures from (26) we are much better oil“: the
integral in (26) extends only over the finite part 7 of the boundary and this leads to a much re»
duced computation when the integral is approximated numerically, Once p is determined on the
finite part of the boundary 7 we can use (26) to compute p anywhere in D. We can also compute
the air velocity since this is proportional to Vp and, from (26),!or r in D,

0Cyl“, r)

9n(r,)

This enables the computation also of intensity vectors

var) = mean, n) + v. ( — surname. o) P(r.)da(r-)-. (28)

An alternative integral equation can be obtained from (28) by taking the component of this equa-
tion in a direction normal to the boundary and then moving 1‘ onto the boundary, to obtain, using
standard jump relations [17] and the impedance boundary condition (2) that, at points on 1 with
y > 0 which are not corner points

gimme) = + — ewm)%) madam). (29)

with the integral understood as a Hadamard finite part.

This second integral equation suffers from the same problem of non-uniqueness ofsolution if 136 = 0.
though at a different set of wavenumhers. It was originally proposed by Burton and Miller [5] that
an integral equation which does not have multiple solutions can be obtained by adding (26) and
(29) together to obtain

%(1+ “mama = Gama) —MW +/1 (%:3') — ikfi[rs)ch(l-5,r) (:su)

- azGMPsvr) - 30mm?)
-M{m — 1kfi(h)W}) p(rs)ds(rs),
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where 1:. a positive constant, is the coupling pammeter, the value K = 1/]: commonly taken. This

formulation has been used for the computations in Duhamel [25].

We noted previously that a requirement of the integral equation (26) is that the boundary 1‘

lies entirely in the upper hall-plane y z 0. A frequent situation is the opposite one in which the

boundary lies predominantly along the line y = 0 but idrops occasionally into the lower hall-plane

1/ < 0: for example this is the case if we are modelling propagation from road traflic in a cutting

onto surrounding fiat ground. A modified integal equation formulation has been proposed for this

case [14]. In [14] it is shown that this modified formulation has no irregular-wavenumbers and in

[49] a numerical treatment scheme is described and calculations of traflic noise propagation are

carried out.

We have assumed in this.section that all barrier elements have a finite thickness. In practice

outdoor noise barriers often have a thickness small compared to the wavelength, which may be

regarded as negligible. The integral equation formulation (26) does not apply in this case but

modified formulations can be employed [22,40,43). If the barrier is rigid on both sides it is com-

putationally more efiicient to employ thee modified formulations and treat the barrier as having

negligible thickness, as discussed in [43].

4. NUMERICAL SOLUTION METHODS

In certain special cases, good estimatu of the solutions of the integral equations of Section 3 can be

made [6,26,31,47,48], but usually an entirely numerical solution procedure must be employed. The

boundary element method is invariably employed, i.e. the part of the boundary 1‘ over which the

integration takes place is divided into small pieces (the boundary elements) and an approximation

of the unknown function as a polynomial is used within each element. Usually, unless the boundary

is already polygonal, say, an approximation of the boundary is also involved.

4.1 A Simple Boundary Element Method .

We consider first the simplest procedure applied to the integral equation (26) by way of example.

The first step is to approximate the boundary, replacing 1 by a polygonal are '7 composed of N

straight line elements 11,71, ...,-m. (We denote the midpoint and length of the nth element, 7... by

r... and h,I respectively, and the length of the largest element by h.) The original region D is thus

replaced by a perturbed region D, and the original solution p is replaced by a perturbed solution

13, unless, of course, 7 is already polygonal.

The perturbed solution :3 satisfies the integral equation (26), with 1, D, p replaced by ‘1, D,

fa. This equation can be written as (we replace D and F by D and l" in the definition of 1,),

" 6054:.» .
r r = G‘, ——tkfir.G¢r,,r ,dsr.nun) 5(rro)+"§[h( am) ()a( ))v(:) <)

N

s Gfic(l‘,fo)+2{/ a—ifififlaea—ekmroj Ga.(r.,r)ds(r.)}postal)
n=l '7'- B ’Vn
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if h (the maximum element length) is small enough so that i and [3 are approximately constant on

each element.

Equation (31) is satisfied approximately by i. The exact solution to (31) (assuming for the mo-
ment that such a solution exists) can he used to approximate it. In fact we do not solve (31) as it
stands, because it is difficult to evaluate the integrals in (31) exactly. Instead we first make further
approximations, replacing the integrals in (31) by approximations,

b(r,1,.) a f" W14“), (32)

C(rm) a /%G9t(rs.r)ds(ra), . (as)

to be discussed shortly. Thus we solve, forthe approximate solution pm the equation

N

'7(I')PN(|‘) = Gain r») + 2: mm) — ikfi(rn)c(r,'1n)lpn(rn).
n=1

This equation expresses pm at an arbitrary point r in terms of the values ofpfi’ at the midpoints

of the N elements. To determine these N values we can set 1' = r,“ for n = 1,2,..,,N, in (34) to

obtain a system of N linear equations in the unknowns pN(r..), n = 1,2, ..., N, namely

N

Z ammo") = GMruyrm), m = 1,2. ~~,N. (34)
n='l

where

1
4

an... = is...» — b(l'm)7n) + skli(r,.)c(r,,,,7,), m," = Law,”

and 6"," = 1, m = n, = 0 otherwise, is the Knonecker delta. The approximations (32) and (33)

are obtained by using a product midpointrule [9], designed so as to produce errors no worse than
those already introduced in (31). The approximations are specified precisely in [9]r

Some comment on computational cost is appropriate. For very large N the cost of solution of

the linear equations (34) dominates if a direct solution method is used (:5 N3/3 multiplications
are required for Gaussian elimination). For values of N z 1000 the cost of setting up the matrix
[a,,,.,] is important, especially if 9, ¢ 0. When [it at 0 this cost is dominated by the evaluation of

Pg‘(r,,,,r,.) and BPB‘(rm,rn)/Bz., {or m,n = 1, 0., N. The cost of carrying out these evaluations is

halved by noting that

Pp‘(rm,rn) = Pp‘(r,., rm), 5Pg‘(r,,,, rn)/H:. = —3Pg‘(rn,rm)/Bz,.

Once the values of my at the element midpoints have been obtained by solving (34), the subsequent
calculation of ms at an arbitrary point r in D using (34) has a very much smaller computational

cost, proportional to N.
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Regarding the size of N required, it is found that the maximum element length It must not exceed
A/5, where A is the wavelength, and element lengths smaller than this are desirable. Thus, the
ratio I‘yl/A, where [7] is the length of 7, the part of the boundary discretised, plays a crucial role
in determining the cost of computations.

42 Accuracy of this Scheme
Provided the wavenumber is not such that the integral equation (26) has more than one solution —
see §3 — the above approximation pN will exist (i.e. (34) will have a solution) and will converge to
the true solution p as h —. 0. In the case ofa polygonal barrier this convergence can be shown using
ideas of Bruhn and Wendland For the particular case of the integral equation (27), which we
recall does not have any irregular wavenumbers, even if [35 = 0, the convergence of essentially this
numerical scheme hm been established in Ross [54]: moreover the maximum error in the predicted
values of pressure on the boundary is shown to be

S C,kh(l + I log(lrh)|),

provided Rfi 25, |B| S 1/6, where the constant 0., depends on e and on [in but not on I: or the
length of the interval of integration 1. (This appears to be the first error estimate for the boundary
element method in acoustic scattering in which the dependence of the error on I: is made explicit.)
ln [8] the dependence of the error on It for equation (27) is investigated further in the case flC = 0,
and it is shown that, for a fixed piecewise constant admittance variation and fixed wavenumber
k, the error is 001’") {or every 6 > 0‘ (That is the convergence rate is almost proportional to
h2 which is the best that can possibly be achieved in general when solving (26) or (27) using a
piecewise constant approximation.)

However, if there exist wavenumbers k' at which the integral equation has more than one so-
lution, which there must if 13: = 0 and part of the boundary lies above y = 0, then the accuracy
must deteriorate near these wavenumbers. Amini and Kirkup [2] investigate this behaviour theo-
retically and experimentally for the method of §4.1 applied to scattering by a rigid circular obstacle
and find that, very near k', the error z Chg/[k — k'l, where C is a constant. In their experiments,
when the wavenumber k is within 0.06% of the value of k‘the accuracy deteriorates by a factor of
approximately 70. Although these deteriorations in accuracy are modest, because the position of
the irregular wavenumbers k‘ is o pn'on' unknown for general scattering shapes, so that [Is — PI is
unknown, they recommend adoption of the Burton and Miller formulation [5], (30) in our context,
and this has been adopted in recent computations by Duhamel [25].

4.3 More Sophisticated Boundary Element Methods
Accuracy can be imprOVed by using higher degree polynomials to approximate the solution: but im-
provements in accuracy can be fairly modest if discontinuities in admittance are present or, worse,
re-entrant corners (corners on I‘ with interior angle 9(r) > 1r). At such points the velocity and thus
Vp is predicted by the Helmholtz equation to be infinite. This is an undesirable inadequacy of the
Helmholtz equation as a model of noise propagation, but also it has unfortunate consequences for
the accuracy of numeriacl; schemes if carried out in a naive way, since polynomials are not ideally
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suited to representing functions with such singularities. In [8] results are reported of solving (27)
using both piecewise constant and piecewise quadratic approximations on a uniform grid, for a case
(as is usual in practice) when 5 is piecewise constant. The results for the piecewise quadratic case
are approximately 6 times more accurate for the same number of degrees of freedom N, but there
is no improvement, either observed or theoretically predicted, in the rate of convergence as h —» 0.
Faster rates of convergence can be obtained by using higher degree polynomials when admittance
discontinuities and/or re-entrant corners are present but only by either representing the singulari-
ties in the solution explicitly so that only a smoother remainder is approximated by polynomials,
as in [8] for equation (27), or by the use ofgraded meshes, i.e. by using smaller and smaller element
sizas as the admittance discontinuity/comer is approached, but in such a way that the total number
of elements is not increaSed significantly. The application of such methods to boundary integral
equations is reviwed in [3], and see [24] where both mesh grading and variable degrees of polynomial
approximation are employed to obtain very rapid convergence rates for obstacle scattering problems.

When using higher degree polynomials to approximate the unknown pressure on the boundary
it is usual at the same time to use the same degree of polynomial approximation to represent the
boundary shape, via the use of socalled isapammetn‘c elements [15]. In Park and Eversman [50]
the use of cubic isoparametric elements to solve (26) is reported, while in Duhamel [25] quadratic
elements are employed in the solution of (30).

We remark finally that accuracy of the numerical solution can be assessed: this is done most
simply by running an extra simulation with double the number of elements, to assess the accuracy
of the original predictions. This can be an expensive procedure however. An alternative error
estimate (though not clearly superior) is described in the context of scattering by obstacles in [27].
Reference I] also recommends the Galerkin BEM for setting up the linear system (34), rather than
the collocation method employed in Section 4.1 and in [25,50]. (More precisely, the method of
Section 4.1 is an iterated collocation method which usually has improved accuracy.) For an expla-
nation of these terms and a discussion of the attractive mathematical properties of the Galerkin
method see

4.4 Computation of Pg=(r,ro)
The first two terms in a uniformly valid asymptotic expansion of Pp‘(r,rn) in the far field (9 =
klr — r’o| large) are given in [6], and this approximation for Ppg is used {or the boundary element
calculations in [43]. The full far field asymptotic expansion, and a proof of its uniform validity, are
obtained in [12] but, for numerical computations, the authors recommend numerical integration of
the representation (24), derived in [11], if fl: is not too close to It It is proved in [11] that the repre-
sentation (24) can be accurately evaluated by Gauss quadrature with weight function t'l/ze'“ and
explicit error estimates are giVen which show that this procedure is extremely accurate in the far
field Numerical calculations show that, using only a 22 point rule, an approximation is generated
which is very accurateexcept in the very near field. An alternative representation for Pp‘ when
[in is close to 1 is also derived, and similar representations for 3Pp=(r,ro)/62 are obtained. it is
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shown that

£3154“) = —2ikflc(¢(r, r1.) — ikflchc(r,rn), (as)

and it is pointed out in [10], or see [43], that higher partial derivatives of Pp‘, such as are needed
in (30), can be computed fromPp‘ and ang/az using (35) and the Helmholtz equation,

(A + k2)P,,e(r,ro) = o

satisfied by Pp‘.

5. COMPARISONS WITH EXPERIMENTAL RESULTS

We show in this section some results illustrating the use of the BEM of 54.1 and comparing numer-
ical and scale model experimental results.

In the graphs shown below predicted and experimentally measured values of excess attenuation

(given by (16)) or of insertion loss (reduction in dB level on inserting the noise barrier) are plotted.

For each of the experiments a point source of sound is used and the receiver position is in the
same plane perpendicular to the noise barrier as the source. The numerical results are obtained by
replacing the point source of sound by a coherent line source, the line source passing through the
position of the point source parallel to the noise barrier.

For the results shown in Figures 4 and 5 elements of size A/5 were used at each frequency. For the
results in Figure 6 this size element was used at the higher frequencies but a smaller element siza
(as a fraction of the wavelength but notin absolute terms) was used at lower frequencies.

Figures _4 and 5(b) show comparisons between the numerical model and experimental results for
barriers on absorbing ground. For the numerical results the admittance fit of the absorbing ground
is calculated using the Delany and Bazley formulae [23] which give the relative admittance (fig)
and complex wavenumber (kg) of a porous medium as functions of a/f, where u is an efl'ective

flow resistivity and f is the frequency. Modelling the ground as a porous layer of thickns T on

top of a rigid half-space, and assuming that the ground is locally reacting, the surface admittance

BC is given by

p, = figtanh(—ich). (36)

Figure 4 shows the results of an outdoor model experiment on grassland carried out by Rasmussen
[52] for the geometry indicated using a three-sided barrier. The ground is modelled as a porous

half-space (T = +00 in (36)) and the flow resistivity a is calculated so as to give the best fit
between experimental measurements of EA and theoretical values in the absence of the barrier.
The agreement between 1/3-octave band experimental measurements andnumerical model results

is good

Figure 5 compares experimental measurements in an anechoic chamber at Bradford University,
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Figure 4: Comparison of third-octave band measurements (——) [52] with BEM predictions (0)

calculated at third-octave centre frequencies. The barrier surface is riy'd and the ground has

effective flow resistivity a = 250000Nsm“.

reported in [7], with theoretical predictions. In this case the barrier is semi-circular, with a hard

plastic surface, and sits on a flat formicacovered chipboard surface, modelling an infinite rigid

plane. In Figure 5(b) both the barrier and the ground plane are made absorbing by covering them

with an 8mm thick carpet (thus T = 8mm in equation (36)). A value a = SODDOONsm" is selected

for use in equation (36), again by fitting to propagation measurements above a homogeneous plane.

The agreement between experiment and theory for the rigid surface case is excellent in Figure 5(a):

also shown is a Fourier-Bessel series analytical solution to the problem of diffraction of a cylindrical

wave by a semi-circular barrier on a rigid plane, given in [50]. The agreement is good over most

of the frequencyrange also in the case of absorbent surfaces (Fig 5(b)). The difierenoes which do

occur may be due to an inadequacy of the Delany-Bazley model as a description of the surface

admittance of the carpet.

The final two graphs (Figure 6) show comparisons of REM predictions and experimental mea-

surements in the same anechoic chamber, taken from [9]. The measurements are at a scale of 1:20:

the graphs plot frequency values and show length dimensions in metres at full scale: the actual

measured frequency values are 20 times higher. in both graphs the experimental measurements are

over 2.5Hz bands(at full scale): the experimental average is formed by taking amean dB value for

each group of 10 adjacent bands. Theoretical values are calculated at the frequencies 25,50 .,1000

Hz.

 

in the two graphs in Figure 4 agreement between BEM and measured values is generally good.

The scatter in both the experimental and theoretical values in Figure 4(b) may be due to reflec-

tions between the two vertical barriers. Futher boundary element predictions for such multiple

noise barrier configurations are contained in [19], and for further comparisons of the BEM with
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  Figure 5: Insertion loss for a semi-circular barrier on a homogeneous plane. experimental; (—
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y = 0.046m, carpeted barrier and plane.
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tions for a single 3m barrier (a) and two parallel 3m barriers (b). The fullscale geometry is as
indicated with dimensions in metres.
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measurements see [20,50,57].

6. OUTDOOR NOISE CONTROL PREDICTIONS

We review briefly here the ways in which the BEM has been used to make predictions of the

performance of noise control elements outdoors. Predominantly, for efficiency (so as to obtain a

two-dimensional problem), in these predictions the sound source has been represented as one or

more coherent line sources, rather than using the computationally more expensive method recently

implemented by Duhamel [25] and discussed in 52 which accurately predicts propagation from a

point or incoherent line source. As demonstrated and discussed already in §5, comparisons with
scale model experimental measurements for single noise barriers on flat ground show that compu-
tations with a coherent line source can be used to accurately predict excess attenuation or insertion

loss for a point source of sound, provided that the receiver is in the same plane perpendicular to
the noise barrier as the source. This conclusion is backed up by comparisons with full scale outdoor

measurements of insertion loss spectra for single and multiple noise barriers under close to zero
wind conditions [57,Figure 13] and by comparisons of point source and coherent line source BEM

predictions of excess attenuation for various shapes of single barriers [25].

However, predominantly, noise barriers are used to screen road traflic streams and rail noise, which

are more appropriately modelled, for the purpose of calculating L9,, values,» by incoherent line

sources. In general, insertion loss values arelower for an incoherent line source than for a point

source at normal incidence (see, for example, the calculations in [39] or [25]). Thus insertion loss
values computed with a coherent line source cannot be used directly e.g. for predicting road traffic

noise L., values. (The same observation applies to scale model and outdoor measurements carried

out with point sources [38,46].) HoweVer, there is some evidence from the scale model tests of
Koyasuta and Yamashita [42], that, as far as the relative screening performances of difierent bar-

rier configurations for broad band spectra are concerned, predictions for a point source at normal

incidence (and thus for a coherent line source) agree well with measurements for an incoherent line
source.

In a series of papers, extensive computations, using the HEM described in §4.l, of the acoustic

performance of a range of noise barrier designs have been carried out using a coherent line source

(approximating a point source at normal incidence, as indicated above). For the reasons already

discussed, the predictions of relative insertion loss made are Likely to be of most value, and for the

most part predictions are presented in the literature of the performance of more complicated noise

barrier-designs relative to the performance of a. standard thin vertical barrier of the same or some

reference height. This is the procedure also followed in the scale model experimental studies of

[38,46] and makes sense also in the respect that absolute insertion loss values depend strongly on

source and receiver positions and on ground type.

A range of cross-sectional shapes, and the effects on them of absorptive coverings, are examined

in Hothersall et al. [33], In particular the insertion losses of standard vertical screens, T-profile

and semi-circular barriers, and of wedge shaped barriers of different wedge angles are compared.

The performance of T-profilé and related shape barriers is considered in more detail in [34] and
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the performance of several parallel screens between a road traffic source and a receiver is explored
in [19], Also in [19], and in more detail in [20], the performance of multiple-edged barriers with
a single foundation is investigated. Typical results from these investigations are shown in Figure
7, reproduced from [20]. The results shown are, for design (a), the mean insertion loss over six
receiver positions, located at heights of 1.5m and 3m, distances 20, 50, and 100m from the barrier
centre line, on the opposite side to the source, which is 15m from the centre line in the rigid ground
surface, and has a broad band spectrum representative of A-weighted road traffic noise [33]. For
the other designs the figures are AIL, the mean improvement in insertion loss ovor the some six
positions, relative to a standard reflective vertical barrier (design (a)). ‘

The boundary element simulations shown in Figure 7, and others in [19,20], led to full-scale tests at
a purpose-built noise barrier test facility at the Transport Research ‘Laboratory and to comparisons
of REM predictions with these experiments [57], and later to the testing of multiple-edged designs
on the M25 [59]. Further full-scale tests and boundary element simulations of the performance of a
complex commercial design are reported in [58]. Recently, using the approximate boundary element
procedure described in [47], predictions of the acoustical effectiveness of porous asphalt (PA) in
place of hot-rolled asphalt (HRA) have been obtained [60], and the effect of barriers on one or both
sides of a motorway on the advantage of PA over HRA has been investigated. Cgmputations, using
the same BEM of 54.1, of the screening of road traffic noise by balconies on tall buildings, and the
effect of absorptive treatment of these balconies are reported in [36],

7. CONCLUSIONS

We hope that it has been made clear in the course ofthe paper that the boundary element method is
an effective method for predicting accurately effects on noise levels of a variety of outdoor features,
including effects due to one or several barriers of arbitrary cross-section and surface treatment.
effects of other localised variations in ground cross-section, the influence of ground type and varia-
tions in ground type, and interactions between these effects.

The boundary element methods which have been described have the limitation that atmospheric
effects are not taken into account. and comparisons with measurements discussed in Section 6 have
been with indoor scale model experiments or with outdoor measurements at low wind speed.

In principle, the methods can be extended to predict effects of simple wind gradient profiles, and
boundary element results for a linear with height sound speed profile, showing scattering from a
bump or trough in the ground surface, are reported in [45]. The Helmholtz integral equation (22)
is employed, with i} replaced by the free-field Green's function for a linear sound speed profile. The
practical difficulty is that this Green‘s function is much more costly to compute and that, even
in the homogeneous case, the integral equation (22), in which the integration is over the whole
boundary 1‘, is expensive to compute with. As a consequence it is not, perhaps, surprising that the
results in [45] are limited to short ranges (up to 20m) at low frequency (100 Hz): Le. computations
are carried out only to a distance of :c 7 wavelengths from the source.

In a similar vein, the restriction in this paper to one-dimensional boundary geometries is a question

Proc.|.0.A. Vol 19 Part 8 (1997) ' . 45

 



 

Proceedings of the Institute 0! Acoustics

BEM IN OUTDOOR PROPAGATION

  

AIL (dB) Den'xn AIL (dB)

Mean

(3) 3m IL = (II) II
[4-76

(h) 4 2-7 (i) 0-4

(G) wa
s

 

0-5 I .
f 1-5|

(d) 0-5 1-2 (k) 26

1 I
(e) m u) 2 2.1

..5| I'
m I-4 (m) 145 '

l l

(s) 2 1-8 (n) 1-“

 

Figure 7: Comparison of different multiple-edge barrier designs. The height of all designs is 3m, the

thickness of the main screen is 0.2m, and a.“ other surfaces have a thickness of0.1m. All dimensions

are in m and those not given can be deduced from designs (e) and (k). Absorbing treatment of

the barrier is indicated (- - -) and corresponds to a surface impedance given by at = 20000Nsm",

T =0.1m in (36).
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of cost rather than one of principle Boundary element predictions for more general geometries,
in particular finite length barriers, are reported for example in [40], and are used in [44] to just,in
a simple method for accurate prediction of finite barrier insertion loss. But, again, these predic-
tions have beenlimited to low frequencies and/or small barrier sizes. A comparison of the costs of
computation of spherical wave scattering by reduction to a sequence of cylindrical wave scattering
problems, as described in Section 2, and by adirect 3D simulation, is given in Duhamel [25], where
the 3D simulation is shown to be orders of magnitude more expensive.

As the above remarks indicate, the full power of the boundary element method is currently limited
by considerations of computational cost (both CPU times and RAM required for the large full
matrices generated). Future increas‘es in computing power will improve the situation (and see [28]
for a recent implementation [or an acoustic scattering problem on a parallel processor), But there
are also very significant algorithmic developments underway in thle boundary element treatment of
wave scattering problems which space does not permit me to mention in detail. Briefly, there are
prospects for bringing down both the main costs of the method — construction of the full matrix in
(34) and the subsequent solution of the linear system — by iterative solution techniques (multigrid
and Krylov subspace methods [3], and other methods for the construction of approximate matrix
inverses and by compression techniques which avoid explicit construction of the full matrix
(panel clustering [30], multipole methods [16], wavelet methods [21]). For the particular integral
equation (27), in the first instance, research is currently underway at Brunei [51], using some of
these techniques, to reduce the computation time from one proportional to N2 or N3, where N is
the number of boundary elements, to one proportional to N log N,

Undoubtedly, there is ample scope for the development, by mathematicians and engineers, of more
sophisticated and powerful boundary element methods for outdoor noise problems, and for their
use as a tool in the further refinement of outdoor noise control measures.
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