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1. INTRODUCTION

The boundary element method (BEM) is an effective method for obtaining accurate solutions to
the standard Helmholtz equation governing the propagation, reflection, and scattering of monofre-
quency acoustic waves in a homogeneous atmosphere. The method is well-developed and has a large
literature for problems of scattering by obstacles of finite size (see e.g. [17,41]), and is practicable
in terms of computational resources required provided the ratio of the diameter of the sca.ttermg
obstacle to the wavelength is not too large.

The first application in outdoor sound propagation appears to be the boundary element simu-
lations of the acoustic field around standard vertical screens on a flat rigid ground surface reported
by Daumas [22). A major application to date has been to the simulation of the performance of
outdoor noise barriers of arbitrary cross-section: its use in this context was introduced by Seznec
[56] and is developed in [7,9,33,50]. Boundary element methods have also been proposed for inves-
tigations of effects of inhomogeneous ground cover {6,29] and for predicting noise propagation from
out of cuttings [14,49). :

The advantages and disadvantages of the method will become clearer in the course of the paper. To
date, it is only really effective for outdoor ground surfaces which are essentially one-dimensional,
meaning that there is some horizontal vector in which direction there is no change in surface el-
evation or in acoustical properties. Further, it is limited in practice to modelling homogeneous
quiescent atmespheres, so that wind and temperature gradient effects and scattering due to atmo-
spheric turbulence are not modelled. The method is best adapted to situations where the ground
is basically flat and homogenous with only localised departures from this (e.g. strips of a different
ground type, noise barriers, cuttings, etc.).

Within these limitations, since it is solving the governing wave equation to an accuracy only limited
by the fineness of the discretisation of the boundary employed, it accurately models the acoustic
performance of noise barriers and ground surfaces of arbitrary cross-sectional complexity and arhi-
trary variations in absorptive properties, and this is its great advantage over competing methods
such as ray-tracing technigues [55) and parabolic equation methods [53], whose ability to treat
complex diffraction and mulliple scattering effects is strictly limited.

Thus, in recent years, boundary element methods have been employed to predict traffic noise

propagation over inhomogeneous flat terrain [32], the performance of a range of novel noise bar-
rier designs [18-20,34,53), the combined effocts of porous asphalt surfacing and barriers on road
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traffic noise [60], and the infiuence of the design of balconies on noise levels in tall buildings {36].
Boundary element methods have also played an important role in the. validation of other, simpler
but approximate methods for outdoor noise caleulations [35,44,55].

In Section 2 we describe in more detail a class of outdeor noise problems that the boundary element
methad is suitable for, and the mathematical formulation. We also outline a method, proposed and
implemented in the outdoor propagation context recently by Duhamel [25,55], by which the com-
putationally expensive 3D problem of scattering of a spherical wave by a barrier of infinite length is
reduced to a sequence of 2D problems by a partial Fourier transformation. The boundary element
method is a numerical solution procedure applied to a reformulation of the Helmholtz equation
as an integral equation on the boundary. In Section 3 we review the available integral equation
formulations: the numerical solution procedures are discussed in Section 4. Some comparisons with
experimental results are presented in Section 5, and applications of the method to outdoor noise
problems, in particular to traffic noise prediction, are reviewed in Section 7. In the concluding
section we briefly mention some prospects for the further development of the method, in particular
the possibilities of modelling arbitrary ground surface geometries and atmospheric effects.

2. PROBLEM FORMULATION

We adopt throughout a right-handed Cartesian coordinate system Qzyz with the y—axis vertically
upwards, and restrict consideration to boundaries which are essentially one-dimensional, with no
variation in géometry or in acoustical properties in the z-direction. For definiteness we suppose,
at this stage, that the excitation is due to a single (monopole) point source (an incident spherical
wave) or due to an infinite coherent line source (incident cylindrical wave case). For the line soutce
we assume that the ‘line’ is parallel to the z—axis. We work throughout in the frequency domain,
carrying out our calculations in the first instance for monofrequency sources with time dependance
e~™*, Figure 1, a cross-section through the ground geometry, shows the most general situation we
consider. The noise emanates from the source at § and is reflected and scattered by the boundary
T', which includes the ground surface itself and any man-made structures, e.g. naise barriers. The
boundary I' may, as shown in the figure, have more than one component, consisting of a single
infinite arc plus one or more closed curves above this, representing, for example, noise barrier ele-
ments. The connected infinite two-dimensional region above I' we denote throughout by D,

We note at this stage that we consider the coherent line source case not because such sources
are an exact model of line sources occuring in practice (e.g. road traffic streams), but becauge the
mathematical problem becomes two-dimensional: the acoustic pressure fluctuation p depends only
on the z and y coordinates of position.

Assuming a homogeneous, quiescent atmosphere (i.e. neglecting wind, temperature, and turbulence
effects) the pressure p satisfics, in D, the Helmholtz equation with delta function inhomogeneity at
the source position,

Ap+kip = b3, (1)

where § is the source position, & = 8*/92® + #*/dy? + 8%/8:% is the Laplacian, and & = w/c is
the wavenumber, with ¢ the speed of sound. We restrict consideration throughout to banndaries
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I
Figure 1: The geometry considered

which are locally reacting, i.e. well-modelied by the impedance boundary condition

ap ..
o = ikBp (2)
on T, where 8/3n denotes the derivative in the normal direction, directed out of D, and f is the

boundary admittance, normalised to that of air, which is, in general, a function of both frequency
and position on T, with § = 0 on perfectly rigid surfaces.

We do not have the space here to discuss specific expressions for § for the variety of outdcor
surfaces (though see Section 6). But note that any physically appropriate impedance model satis-
fies that R > 0 (to ensure the energy flow is into not out of the surface), and other constraints
discussed in [37).

To complete the problem formulation we need to express mathematically the idea that the so-
lution p we are seeking should be a wave traveiling outwards from the source. In particular, we
expect at least the decay associated with cylindrical or spherical spreading, i.e. that

r*=14?5 remains bounded (3)

as r — oo, where, in the line source, two-dimensional case, n = 2 and ¥ is distance {from the line
¢ = y = 0, while, in the point source, 3D case, » = 3 and r is distance form the origin. Furthermore,
we impose the Sommerfeld radiatien condition, that (.

pln=11/2 (% - :'kp) -0 (4)
as r — 00,

In the case when the boundary is not present, i.e. in free space, the above problem can be solved
exactly. For a point source, .
£ikR
= -, 5
k 4T R (5)
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where £ is the distance from the source. For a line source,
i
p= - H(kR), (6

where H.g'] is the Hankel function of the first kind of order zero. In the case when the boundary is
present, (5) and (6) are the spherical and cylindrical waves, respectively, incident on the boundary T

It was noted above that the line source/cylindrical wave is more straightforward mathematically:
the problem to be solved is two-dimensional. As pointed out in the context of cutdoor propagation
recently by Duhamel [25,55], we can reduce the three-dimensional case of an incident spherical
wave to the solution of a collection of 2D problems by representing the incident spherical wave as
a linear combination of cylindrical waves. Precisely, we have that [25]

ek R

i +eo (1) I
- 5= *g/_ H (ko Ro)e™ dar, (1)

where R is the distance from source at {zg, 30,0) to the receiver at (z,¥, z), ks = VE? — o?, with
ky = iv/a? — k% when |a| > k, and Ry = {(z ~zo)?+ (y —%0)*)"/? is the distance between the source
and receiver positions projected onto the plane z = 0. Introducing two-dimensional position vectors
ro = (Zo, ), specifying the source position, and r = (=z, y), specifying the first two components of
the receiver position, we note that B; = |r — ro|- For an incident field

i . : .
—zﬂg”(kanz)em = _ingﬂ(k,h — rol)e™

we look for a reflected/scattered field in the form P™/(r)e®?, and this satisfies the Helmholtz
equation {1} if and only if

Po(r) = =2 H§ (kalr - rol) + P™I(r) (8)
satisfies that
APy + k2P, = 6, )

Similarly, the impedance boundary condition (2} is satisfied if and only if

(_98'{':5" = tho s Fa, (10)

on I', where 8, = k.8/k. Further, P™(r)e’®? is an outwards travelling wave if and only if P,
satisfies (3) and (4), but with % replaced by k, in (4), that is we require that

2P remains bounded {11)

as r — oo, where r is distance from the line z = y = 0, and that

r1/2 (% = ik,,R,) -0 {12)

or
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as r — o0. We note that this method of procedure therefore reduces the problem of an incident
spherical wave to the solution of equations (9)-(12), which are exactly the equations (1)-(4) to be
solved in the case of an incident cylindrical wave.

Once Po(r)e'*, the total field corresponding to incident fietd —(z'/4)Hc(,l}(k,|r - rg|)e*®?, has been
computed for each a, we can calculate the pressure p at an arbitrary peint (z,y,2) for a point
source at (Zq, ¥o,0) by integrating over a, as in {7), to give that

1 +oo .
P= p(mly:z) = g -/: Pa(r)eiuidﬂ. (13}

Frequently, we are interested in the total noise exposure due to a point source moving at uniform
speed along the straight line £ = 2p, ¥ = . Since, equivalently, we may move the receiver, this
noise exposure (noise level due to an incoherent line source along = = zo, y = 1) is

+oo
J= f Iplz. v, 2)[*dz. (14)

Noting that, from (13), p(z, y, z) is related to P,(r) by Fouriet transformation, we have by Parseval's
theorem that

J= —1-[+°°|P( % (15
=/, | r)|“da. )

We usually wish to calculate noise levels associated with broad band sources, and are given source
spectra which enable us to compute noise levels (§PL, L,,) in each frequency band in standard
conditions, €.g. in the free field. Then what is needed is to compute the excess atlenustion, the
additional attenuation due to the ground surface. For the point source or coherent line source cases
this additional reduction in SPL is '

EA = —20logy, |p/pF|, (16)

where pp is the pressure in free field conditians, given by (5) or {6). In the case of sources moving
at uniform speed along the line £ = zg, ¥ = ¥y, (the incoherent line source case), the integral (14)
is proportional to L.,, and the reduction in L.y due to the ground surface is

EA = —101ogyo(J/Jr), (17)

where Jp = 1/(167 R;) is the value of J in the free field situation.

In practice the infinite range of integration in (13} and (15) is truncated and then the integrals
are approximated by numerical integration methods which replace the integrals of (13) and (15) -
by finite but rather large sums (see [25,55] for proposed methods for this). Thus the problem of
spherical wave scatiering at a single wavenumber k is replaced with that of solving many 2D cylin-
drical wave scattering problems for different wavenumbers k.. With the possibility of nsing this
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methed in mind for the point source case, we concentrate in the next three sections on the solution
of the cylindrical wave scattering problem (1)-(4) (with » = 2), remembering that in applying
these techniques to solving (9)-(12) we will wish to replace k by k,, with k, > 0 for |a| < k, but
k, = t+/o? — k? being pure imaginaty for |a| > k.

3. BOUNDARY INTEGRAL EQUATION FORMULATIONS

A boundary integral equation (BIE) formulation for the problem comsisting of equations (1)-(4)
can be obtained as follows. (As indicated in the previous section, it will be enough to consider the
two-dimensional case n = 2 of an incident cylindrical wave).

The BIE formulation depends on knowledge of exact solutions to the specified problem (1)-(4)
for at least one special geometry. The simplest situation for which a solution is available is the case
when the boundary is absent altogethr, i.e. the free field case, when the exact solution is given by
(6). Let &(r,rg) denote this solution, i.e.

#(r,ro) = --H Nkl - rol), t# ro. (18)

Then a boundary integral equation formulation can be derived as follows. Apply Green’s second
theorem [17] to the functions u and v, defined by u(rs} = p(rs), v(rs) = ¥(rs,r), in the region E
consisting of that part of I contained in a large circle of radius R; centred on the origin, excluding
small circles of radius € surrounding the source position rg, located somewhere in D, and the
receiver position r, with r # rg some point in D or on I. Then, since the region E excludes the
singularity in u at v and in v at r, we have that Au + kE%u = Av + k%0 = D in E so that

av au
]aE (u%—va)ds—o, (19)

where JF denotes the boundary of £. Letting ¢ — 0 and By — oo in (19) we obtain

e(r)u(r) = v{ro) +_/ ( o _ g:) ds (20)
where
forrin D,
«(r) = { r)fr, forronT, (21)

where {}(r) denotes the interior angle in D at r (=  if r is smooth at r). Utilising the impedance
boundary condition (2), we obtain a first BIE formulation, that

e(e)pr) = B(e,0) + [ (‘”""""’ iB(x08(re, ) | BlEds(ra). (22)

Equnation (22), often referred to as the lelmholtz integral equation, expresses p at an arbitrary
pesition in the region I in terms of values of p on the houndary [ alone. Once the values of the
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pressure p on the boundary T' are known, exactly or approximately, the pressure can, in principle,
be computed at any point off the boundary, by approximating the integral in (22} by a suitable
numerical integration rule.

Equation (22) holds, in particular, when r is on I and, for these values of r, is a boundary in-
tegral equation for the unknown pressure on the boundary I'. This equation is solved numerically
as the first stage in the boundary integral equation method and the values of pressure on ' computed
are used in a second stage to calculate pressure values at whichever positions are of interest off the
boundary.

When we come to discuss numerical implementation in the next section we will see that it

¥

Source . ¥
[ ]
A 'B T
Figure 2: A local perturbation of a homogeneous plane. The surfaces are assumed to have the
same constant admittance 8., except for a localised part 7, which may consist of one or more noise
barriers and part of the ground surface (A B in this case).

can be computationally very expensive to have the integral in (22) extend over the whole infi-
nite boundary I'. This can be avoided in cases where the ground is basically flat and uniform in
surface impedance except for localised features. In particular, consider a situation such as that
shown in Figure 2, where, sufficiently far away from the source, the boundary I' coincides with the
line ¥ = 0. Assume also that, again sufficiently far away from the source, the boundary has a con-
stant admittance d., and that any deviations from the line ¥ = 0 are into the upper half-plane y > 0.

In the special case when the whole boundary coincides with the line y = 0 and has admittance
B. we have prapagation above a homogeneous impedance plane and explicit expressions for the
pressure can be given. Let Gg,(xr,xp) denote the pressure at r when the source is at rp in this case.
Then, explicitly {11],

Gaulr,ro) = — 7 H§"kir — rol) - ZH{klr - rol) + Pa(r, ro), (23)

where ry = (Zp, —%o) is the image of the source and

ﬂelp (t=ay

Pa(r.re) = T st gy 4 A \/_Ierfc(e"'/“f‘/ﬁ) B #1, (24)

with p = k|r —rgl, a4 = 1 4 B cos 8y — /1 = F2sinby, B = arccos((y + yo)/|r — rh|) the angle of
incidence, erfc the complementary error function, and

(t) = Betcos o {14} AN
g T R —Ti(V + B, con B ) —( B, +oos 60)7) W?—TE(A!—-%)
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Note that all the complex square roats in the above expressions are to be taken with non-negative
real part.

Using this explicit solution we can proceed identically as in the derivation of {20), to find that
(20) halds with v redefined as v(r) = G (r,ro), provided we replace €(r) by n(r), defined by

1, ifrin D, .
7(e)= 4 Rz, ifr=(zy)on T,y >0, (25)
2r)/x, ifr=(z,y)on T,y =0.

Utilising the impedance condition (2}, and alsc the impedance boundary condition staisfied by Gg,,
we find that the integral over [ reduces to one over -y, where v consists of those parts of I on which
8 # 8. or which lie above y = 0. Explicitly, we find that [56]

) = Garro) + | (SEEBE — ikp(en)Ginten,r)) pleshis(e), (26)

this equation used first for numerical comuptation in Seznec [56] (but only for 8. = 0) and more
recently in {7,9,33,50].

- Occasionally we are interested in the case of propagation over flat ground of variable acoustic

type, that is we wish to consider the case when I coincides with the line y = 0. Then, in view of
the impedance condition satisfied by Gg, on T, (26) simplifies to

p(r) = Gg,(r,ro} + ik L{ﬂc — B(z6))G,(rs, T)p(re)ds(rs). (27)

At this point we note that the basic Helmholtz integral equation (26) suffers from the problem

A B T
Figure 3: Case of a single mound/noise barrier and the interior problem which determines unique-
ness in this case.

that there may exist wavenumbers k al which it has more than one solution, only one of which is

physically correct. (The special case of equation (27) does not have this problem of non-uniqueness,

as shown in {13].} Consider first the case shown in Figure 3 in which the boundary is flat, except

for a single mound/noise barrier bounded above by the arc -y. In this case the integral equation has

more than one solution if and only if the problem in the bounded region underneath the barrier,
1
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shown in Figure 3, has a resonant mode. This interior problem consists of the boundary condition
P = 0 on 7 and the impedance condition 8p/8n = ikf.p on the part of the line y = 0 inside the
barrier. If 3. > 0 (the ground is energy-absorbing) then this interior problem has no resonant
modes. If the barrier is on rigid ground (3, = 0) then this interior problem has resonant modes at
an unbounded infinite sequence of positive wavenumbers, called the irregular wavenumbers for the
integral equation (26). If there is more than one barrier, as in Figure 2, then there is an infinite
sequence of irregular wavenumbers associated with each barrier, and if, as in Figure 1, there are
components of the boundary I' which are closed curves, disconnected from the ground surface, then
there are irregular wavenumbers also associated with each of these components, these being the
resonant modes for the Helmholtz equation in the component with boundary condition p = 0.

If k is exactly equal to one of these irregular wavenumbers then the integral equation (26) has
more than one solution. There are also difficulties when numerical solution methods are employed
if k is very close to an irregular wavenumber, discussed in §4. ’

Compared to equation (22), when computing pressures from (26) we are much better off: the
integral in (26) extends only over the finite part 4 of the boundary and this leads to a much re-
duced computation when the integral is approximated numerically. Once p is determined on the
finite part of the boundary ¥ we can use (26) to compute p anywhere in . We can also compute
the air velocity since this iz proportional to Vp and, from (26), for r in D,

8G,(ra.)
n(e,)

This enables the computation also of intensity vectors.

Vp(r) = V,Gp(r,re} + Lvr ( — 1kB(rs}Gp, (rs, r)) p(rs)ds(rs)., (28)

An alternative integral equation can be obtained from (28) by taking the component of this equa-
tion in a direction normal to the boundary and then moving r onto the boundary, to obtain, using
standard jump relations [17] and the impedance boundary condition (2) that, at points on v with
v > 0 which are not corner points

gibstolne) = D)y [ (D0l ) POREE)) s, oo

with the integral understood as 2 Hadamard finite part.

This second integral equation suffers from the same problem of non-uniqueness of solution if . = 0,
though at a different set of wavenumbers. It was originally proposed by Burton and Miller 5] that
an integral equation which does not have multiple solutions can be obtained by adding (26} and
(29) together to obtain

. 8G T G g, (rs, . .
301+ kEA(E) (e = G (r,ro) — in 5::‘(:) Di*ﬂ( Bﬁz([:s)r)_‘kﬁ(rs)Gm(rs.r) (30)

. | 3G s, 1) . 3G, (rarT)
-m{m - ‘kﬂ(rs)w}) pre)ds(r.),
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where &, a positive constant, is the coupling parameter, the value x = 1/k commonly taken. This
formulation has been used for the computations in Duhamel [25].

We noted previously that a requirement of the integral equation (26) is that the boundary T
lies entirely in the npper half-plane y > 0. A frequent situation is the opposite one in which the
boundary lies predominantly along the line ¥ = 0 but drops occasionally into the lower half-plane
¢ < 0: for example this i the case if we are modelling propagation from road traffic in a cutting
onte surrounding flat ground. A modified integral equation formulation has been proposed for this
case [14]. In [14] it is shown that this modified formulation has no irregular wavenumbers and in
[49] 2 numerical treatment scheme is described and calculations of traffic noise propagation are
carried out.

We have assumed in this.section that all barrier elements have a finite thickneszs. In practice
outdoor noise barriers often have a thickness small compared to the wavelength, which may be
regarded as negligible. The integral equation formulation (26) does not apply in this case but
modified formulations can be employed [22,40,43). If the barrier is rigid on both eides it is com-
putationally more efficient to employ these modified formulations and treat the barrier as having
negligible thickness, as discussed in [43].

4. NUMERICAL SOLUTION METHODS

In certain special cases, good estimates of the solutions of the integral equations of Section 3 can be
made [6,26,31,47,48), but usually an entirely numerical solution procedure must be employed. The
boundary element method is invariably employed, i.e. the part of the boundary I over which the
integration takes place is divided inta small pieces (the boundary elements) and an approximation
of the unknown function as a polynomial is used within each element. Usually, unless the boundary
is already polygonal, say, an approximation of the boundary is also involved.

4.1 A Simple Boundary Element Method

We consider first the simplest procedure applied to the integral equation (26) by way of example.
The first step is to approximate the boundary, replacing ¥ by a polygonal arc ¥ composed of N
straight line elements 7yy,73, ..., Tn. {We denote the midpoint and length of the uth element, -, by
r, and h, respectively, and the length of the largest element by h.) The original region D is thus
replaced by a perturbed region D, and the original solution p is replaced by a perturbed solution
P, unless, of course, « is already polygonal,

The perturbed sclution p satisfies the integral equation (26), with +, D, p replaced by %, D,
f. This equation can be written as (we replace It and [ by I and T in the definition of ),

aGﬁc(rs. .
rip(r) = Gg, —tkﬁrchr,,r o )ds(rg
n(r)p(r) ﬁ(rro)+§[( e et ikB(r)Gp.(rerm)) plrelds(re)

o Gatreo)+ S { [ 20T ase) - ki) | Gtenrasten} enan
=1 ¥ 8 Tn
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if h (the maximum element length) is small enough so that p and § are approximately constant on
each element.

Equation (31) is satisfied approximately by 5. The ezact solution to (31) (assuming for the mo-
ment that such a solution exists) can be used te approximate f. In fact we de not solve (31) as it
stands, because it is difficult to evaluate the integrals in (31) exactly. [nstead we first make further
approximations, replacing the integrals in (31) by approximations,

et [ ), (32)
cwm) % [ Galrerda(ny), e

to be discussed shortly. Thus we solve, for the approximate solution py, the equation

N
n{r)pn(r) = Ga.(r,ra) + Y {b(r, va) — #kB(Tn)e(r, 10} } PN (Tn).

n=1

This equation expresses py at an arbitrary point r in terms of the values of pji at the midpoints
of the ¥ elements. To determine these N values we can set r = rp,, forn = 1,2,..., N, in {34) to
obtain a system of N linear equations in the unknowns py(ra), n = 1,2,..., N, namely

N
Z CrndN{Tn) = Gp(ro,fm), m=12,.,N, (34)

a=1
where

Gmn = % m = O(Fwm, ¥u) + i0B(rn)e(Tms yu)y m,n=1,2,..,N.

and b, = 1, m = n, = 0 otherwise, is the Knonecker delta. The approximations {32) and (33)
are obtained by using a product midpoint rule [9], designed so as to produce errors no worse than
those already introduced in {(31). The approximations are specified precisely in [9]-

Some comment on computational cost is appropriate. For very large N the cost of solution of
the linear equations (34) dominates if a direct solution method is used (= N3/3 multiplications
are required for Gaussian elimination). For values of N == 1000 the cost of setting up the matrix
[@mn] is important, especially if #. # 0. When 8. # 0 this cost is dominated by the evaluation of
Py (tm,r,) and 8P, (v, r,)/02,, for m,n = 1,..., N. The cost of carrying out these evaluations is
halved by noting that

P (tpm,tn) = Fo(Pn,tm), 8Pa (Pm,a)/8T, = —8F5.(rn,Tm)f0z,.

Once the values of py at the element midpoints have been obtained by solving (34), the subsequent
calculation of py at an arbitrary point r in D using (34) has a very much smaller computational
cost, proportional to N,
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Regarding the size of N required, it is found that the maximum element length » must not exceed
Af5, where A is the wavelength, and element lengths smaller than this are desirable. Thus, the
ratio |y|/A, where [y] is the length of v, the part of the boundary discretised, plays a crucial role
in determining the cost of computations.

4.2 Accuracy of this Scheme

Provided the wavenumber is not such that the integral equation (26) has more than one solution -
see §3 — the above approximation py will exist (i.e. (34) will have a solution) and will converge to
the true solution p as & — 0. In the case of a polygonal barrier this convergence can be shown using
ideas of Bruhn and Wendland [4). For the particular case of the integral equation (27}, which we
recall does not have any irregular wavenumbers, even if §, = 0, the convergence of essentially this
numerical scheme has been established in Ross [54): moreover the maximum error in the predicted
values of pressure on the boundary is shown to be :

< Cokh(1 + | log(kh)(),

provided R > ¢, |8| < 1/e, where the constant C, depends on £ and on 8, but not on & or the
length of the interval of integration v. (This appears to be the first error estimate for the boundary
element method in acoustic scattering in which the dependence of the error on k is made explicit.)
In [8] the dependence of the error on A for equation {27) is investigated further in the case 8, = 0,
and it is shown that, for a fixed piecewise constant admittance variation and fixed wavenumber
k, the error is O(h?*) for every € > 0. (That is the convergence rate is almost proportional to
k* which is the best that can possibly be achieved in general when solving (26) or (27) using a
piecewise constant approximation.)

However, if there exist wavenumbers k* at which the integral equation has more than one so-
lution, which there must if . = 0 and part of the boundary lies above y = 0, then the accuracy
must deteriorate near these wavenumbers. Amini and Kirkup [2] investigate this behaviour theo-
retically and experimentally for the method of §4.1 applied to scattering by a rigid circular obstacle
and find that, very near k", the errar = Ch?/{k — k*|, where C is a constant. In their experiments,
when the wavenumber k is within 0.06% of the value of k* the accuracy deteriorates by a factor of
approximately 70. Although these deteriorations in accuracy are modest, because the position of
the irregular wavenumbers k* is a priori unknown for general scattering shapes, so that |k = &*| is
unknown, they recommend adoption of the Burton and Miller formulation [6], (30) in our context,
and this has been adopted in recent computations by Duhamel [25].

4.3 More Sophisticated Boundary Element Methaods

Accuracy can be improved by using higher degree polynomials to approximate the solution: but im-
provements in accuracy can be fairly modest if discontinuities in admittance are present or, worse,
re-entrant corners (corners on I' with interior angle (r) > 7). At such points the velocity and thus
Vp is predicted by the Helmholtz equation to be infinite. This is an undesirable inadequacy of the
Helmhaltz equation as a model of noise propagation, but also it has unfortunate consequences for
the accuracy of numeriacl; schemes if carried out in a naive way, since pelynomials ate not ideally
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suited to representing functions with such singularities. In [B] results are reported of solving (27)
using both piecewise constant and piecewise quadratic approximations on a uniform grid, for a case
(as is usual in practice) when f§ is piecewise constant. The results for the piecewise quadratic case
are approximately 6 times more accurate for the same number of degrees of freedom N, but there
is no improvement, either observed or theoretically predicted, in the rate of convergence as h — 0,
Faster rates of convergence can be obtained by using higher degree polynomials when admittance
discontinuities and/or re-entrant corners are present but only by either representing the singulari-
ties in the solution explicitly so that only a smoother remainder is approximated by polynomials,
as in [8] for equation (27), or by the use of graded meshes, i.e. by using smaller and smaller element
sizes a5 the admittance discontinuity/corner is approached, but in such a way that the total number
of elements is not increased significantly. The application of such methods to boundary integral
equations is reviwed in (3], and see [24] where both mesh grading and variable degrees of polynomial
approximation are employed to obtain very rapid convergence rates for obstacle scattering problems.

When using higher degree polynomials to approximate the unknown pressure on the boundary
it is usual at the same time to use the same degree of polynomial approximation to represent the
boundary shape, via the use of so-called isaparametric elements [15]. In Park and Eversman [50]
the use of cubic isoparametric elements to solve (26) is reported, while in Duhamel [26] quadratic
elements are employed in the solution of (30).

We remark finally that accuracy of the numerical solution can be assessed: this is done most
simply by runming an extra simulation with double the number of elements, to assess the accuracy
of the original predictions. This can be an expensive procedure however. An alternative error
estimate {though not clearly superior) is described in the context of scattering by obstacles in [27].
Reference [] also recommends the Galerkin BEM for setting up the linear system (34), rather than
the collocation method employed in Section 4.1 and in [25,50). (More precisely, the method of
Section 4.1 is an iterated collocation method which usually has improved accuracy.) For an expla-
nation of these terms and a discussion of the attractive mathematical properties of the Galerkin
method see [3].

4.4 Computation of Fg,(r,xp)

The first two terms in a uniformly valid asymptotic expansion of Fa (r,rp) in the far field (p =
kir — rp| large) are given in [6], and this approximation for Pj, is used for the boundary element
calculations in [43]. The full far field asymptotic expansion, and a proof of its uniform validity, are
obtained in [12] but, for numerical computations, the authors recommend numerical integration of
the representation {24), derived in {11}, if 8. is not too close to 1. It is proved in [11] that the repre-
sentation (24} can be accurately evaluated by Gauss quadrature with weight function t~1/2¢=#* and
explicit error estimates are given which show that this procedure is extremely acenrate in the far
field. Numerical calculations show that, using only a 22 point rule, an approximation is generated
which is very accurate except in the very near field. An alternative representation for Py, when
8. is close to 1 is also derived, and similar representations for 8P (r,rg)/0z are obtained. [t iy
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shown that

‘Kﬁg—’rﬂ = —2ikB.8(r, ¥y) — ikBPs (r, o), (35)

and it is pointed out in [10], or see [43], that higher partial derivatives of P, such as are needed
in (30), can be computed from Py, and @Fg, /@z using {35) and the Helmholtz equation,

(& + k)P (r,ro) = 0
satisfied by Fp,.
5. COMPARISONS WITH EXPERIMENTAL RESULTS

We show in this section some results illustrating the use of the BEM of §4.1 and comparing numer-
ical and scale model experimental results.

In the graphs shown below predicted and experimentally measured values of excess attenuation
(given by (16)) or of insertion loss (reduction in dB level on inserting the noise barrier) are plotted.
For each of the experiments a point source of sound is used and the receiver position is in the
same plane perpendicular to the noise barrier as the source. The numerical results are cbtained by
replacing the point source of sound by a coherent line source, the line source passing through the
position of the point source parallel to the noise barrier.

For the results shown in Figures 4 and 5 elements of size A/5 were used at each frequency. For the
results in Figure 6 this size element was used at the higher frequencies but a smaller element size
{as a fraction of the wavelength but not in absolute terms) was used at lower frequenci¢s.

Figures 4 and 5(b) show comparisons between the numerical model and experimental results for
barriers on absorbing ground. For the numerical results the admittance . of the absorbing ground
is calculated using the Delany and Bazley formulae [23] which give the relative admittance (8g)
and complex wavenumber (kg) of a porous medium as functions of o/ f, where o is an effective
flow resistivity and f is the frequency. Modelling the ground as a porous layer of thickness T' on
top of a rigid half-space, and assuming that the ground is locally reacting, the surface admittance
B. is given by

B. = Bgtanh(—iTkg). (36)

Figure 4 shows the results of an outdoor model experiment on grassland carried out by Rasmussen
[52] for the geometry indicated using a three-sided barrier. The ground is modelled as a porous
half-space (T = +4co in (36)) and the flow resistivity ¢ is calculated so as to give the best fit
between experimental measurements of FA and theoretical values in the absence of the barrier.
The agreement between 1/3-octave band experimental measurements and numerical mode! results

is good.

Figure 5 compares experimental measurements in an anechoic chamber at Bradford University,
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Figure 4: Comparison of third-octave band measurements {—) [52] with BEM predictions (e)
calculated at third-octave centre frequencies. The barrier surface is rigid and the ground has
effective flow resistivity ¢ = 250000Nsm™*.

reported in [7], with theoretical predictions. In this case the barrier is semi-circular, with a hard
plastic surface, and sits on a flat formica-covered chipboard surface, modelling an infinite rigid
plane. In Figure 5(b) both the barrier and the ground plane are made absorbing by covering them
with an Bmm thick carpet (thus 7 = 8mm in equation (36)). A value ¢ = 500000Nsm™ is selected
for use in equation {36}, again hy fitting to propagation measurements above a homogeneous plane.
The agteement between experiment and theory for the rigid surface case is excellent in Figure 5(a):
also shown is a Fourier-Bessel series analytical solution to the problem of diffraction of a cylindrical
wave by a semi-circular barrier on a rigid plane, given in [50]. The agreement is good over most
of the frequency range also in the case of absorbent surfaces (Fig 5(b)). The differences which do
occur may be due to an inadequacy of the Delany-Bazley model as a description of the surface
admittance of the carpet.

The final two graphs (Figure 6) show comparisons of BEM predictions and experimental mea-
surements in the same anechoic chamber, taken from [9]. The measurements are at a scale of 1:2(:
the graphs plot frequency values and show length dimensions in metres at full scale: the actual
measured frequency values are 20 times higher. In both graphs the experimental measurements are
over 2,5Hz bands {at full scale): the experimental average is formed by taking a mean dB value for
each group of 10 adjacent bands. Theoretical values are caleulated at the frequencies 25,50,...,1000
Hz.

In the two graphs in Figure 4 agreement between BEM and measured values is generally good.
The scatter in both the experimental and theoretical values in Figure 4(b} may be due to reflec-
tions between the two vertical barriers. Futher boundary element predictions for such multiple
noise barrier configurations are contained in [19], and for further comparisons of the BEM with
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Figure 5: Insertion loss for a semi-circular barrier on a homogeneous plane. (-) experimental; (—
—) analytical; {- - - -) BEM. The source and receiver coordinates are £ = 0.5m, yp = 0.048m,

z = 0.5m ((0,0) is the centre of the barrier). (a} y = 0.0465m, rigid barrier and plane; (b)
¥ = 0.046m, carpeted barrier and plane,
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measurements see [20,50,57].
6. OUTDOOR NOISE CONTROL PREDICTIONS

We review briefly here the ways in which the BEM has been used to make predictions of the
performance of noise control elements outdoors. Predominantly, for efficiency (so as to obtain a
two-dimensional problem), in these predictions the sound source has been represented as one or
more coherent line sources, rather than using the computationally more expensive method recently
implemented by Duhamel {25] and discussed in §2 which accurately predicts propagation from a
point or incoherent line source. As demonstrated and discussed already in §5, comparisons with
scale model experimental measurements for single noise barriers on flat ground show that compu-
tations with a coherent line source can be used to accurately predict excess attenuation or insertion
loss for a point source of sound, provided that the receiver is in the same plane perpendicular to
the noise barrier as the source. This conclusion is backed up by comparisons with full scale ontdoor.
measurements of insertion loss spectra for single and multiple noise barriers under close to zero
wind conditions [57,Figure 13] and by comparisons of point source and coherent line source BEM
predictions of excess attenuation for various shapes of single barriers [25].

However, predominantly, noise barriers are used to screen road traffic streams and rail noise, which
are more appropriately modelled, for the purpose of caleulating L., values, by incoherent line
sources. In general, insertion loss values are lower for an incoherent line source than for a point
source at normal incidence (see, for example, the calculations in [39] or [25]}. Thus insertion loss
values computed with a coherent line source cannot be used directly e.g. for predicting road traffic
noise Lg, values. (The same observation applies to scale model and outdoor measurements carried
out with point sources [38,46].) However, there is some evidence from the scale model tests of
Koyasuta and Yamashita [42], that, as far as the relative screening performances of different bar-
tier configurations for broad band spectra are concerned, predictions for a point source at normal
incidence (and thus for a coherent line source) agree well with measurements for an incoherent line
souree.

In a series of papers, extensive computations, using the BEM described in §4.1, of the acoustic
performance of a range of noise barrier designs have been carried out using a coherent line source
{approximating a point source at normal incidence, as indicated above). For the reasons already
discussed, the predictions of relative insertion loss made are likely to be of most value, and for the
most part predictions are presented in the literature of the performance of more complicated noise
barrier-designs relative to the performance of a standard thin vertical barrier of the same or some
reference height. This is the procedure also followed in the scale model experimental studies of
[38,46] and makes sense also in the respect that absolute insertion loss values depend strongly on
source and receiver positions and on ground type.

A range of cross-sectional shapes, and the effects on them of absorptive coverings, are examined
in Hothersall et al. [33]. In particular the insertion losses of standard vertical screens, T-profile
and semi-cireular barriers, and of wedge shaped barriers of different wedge angles are compared.
The performance of T-profile and related shape barriers is considered in more detail in [34] and
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the performance of several parallel screens between a road traffic source and a receiver is explored
in [18). Alsc in [19], and in more detail in [20], the performance of multiple-edged barriers with
a single foundation is investigated. Typical results from these investigations are shown in Figure
7, reproduced from [20). The results shown are, for design (a), the mean insertion loss over six
receiver positions, located at heights of 1.5m and 3m, distances 20, 50, and 100m from the barrier
centre line, on the opposite side to the source, which is 15m from the centre line in the rigid ground
surface, and has a broad band spectrum representative of A-weighted road traffic noise [33]. For
the other designs the figures are AIL, the mean improvement in insertion loss over the same six
positions, relative to a standard reflective vertical barrier (design {a})). ‘

The boundary element simulations shown in Figure 7, and others in [19,20), led to full-scale tests at
a purpose-built noise barrier test facility at the Transport Research 'Laboratory and to comparisons
of BEM predictions with these experiments [57], and later to the testing of multiple-edged designs
on the M25 [59]. Further full-scale tests and boundary element simulations of the performance of a
complex commercial design are reported in [58]. Recently, using the approximate boundary element
procedure described in [47], predictions of the acoustical effectiveness of porous asphalt (PA) in
place of hot-rolled asphalt (HRA) have been obtained [60], and the effect of barriers on one or both
sides of a motorway on the advantage of PA over HRA has been investigated. Computations, using
the same BEM of §4.1, of the screening of road traffic noise by balconies on tall buildings, and the
effect of absorptive treatment of these balconies are reported in [36).

7. CONCLUSIONS

We hope that it has been made clear in the course of the paper that the houndary element method is
an effective method for predicting accurately effects on noise levels of a variety of cutdoor features,
including effects due to one or several barriers of arbitrary cross-section and surface treatment,
effects of other localised variations in ground cross-section, the influence of ground type and varia-
tions in ground type, and interactions between these effects.

The boundary element methods which have been described have the limitation that atmospheric
effects are not taken into account, and comparisons with measurements discussed in Section 6 have
been with indoor scale model experiments or with outdoor measurements at low wind speed.

In principle, the methods can be extended to predict effects of simple wind gradient profiles, and
boundary element results for a linear with height sound speed profile, showing scattering from a
bump or trough in the ground surface, are reported in [45]. The Helmholtz integral equation {22)
is employed, with @ replaced by the free-field Green's function for a linear sound speed profile. The
practical difficulty is that this Green’s function is much more costly to compute and that, even
in the homogeneous case, the integral equation {22), in which the integration is over the whole
boundary T, is expensive to compute with. As a consequence it is not, perhaps, surprising that the
results in [45] are limited to short ranges (up to 20m) at low frequency (100 Hz): i.e. computations
are carried out only to a distance of &= 7 wavelengths from the source.

In a similar vein, the restriction in this paper to one-dimensional boundary geometries is a question
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Figure 7: Comparison of different multiple-edge barrier designs. The height of all designs is 3m, the
thickness of the main sereen is 0.2m, and all other surfaces have a thickness of 0.1m. All dimensions
are in m and those not given can be deduced from designs (e) and (k). Absorbing treatment of
the barrier is indicated (- - -) and corresponds to a surface impedance given by o = 20000Nsm™,

T =0.1m in (36}.
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of cost rather than one of principle. Boundary element predictions for more general geometries,
in particular finite length barriers, are reported for example in [40], and are used in [44] to Justify
a simple method for accurate prediction of finite barrier insertion loss. But, again, these predxc—
tions have been limited to low frequencies and/or small barrier sizes. A comparison of the costs of
computation of spherical wave scattering by reduction to a sequence of cylindrical wave scattering
problems, as described in Section 2, and by a direct 3D simulation, is given in Duhamel [25], where
the 3D simulation is shown to be orders of magnitude more expensive.

As the above remarks indicate, the full power of the boundary element methed is currently limited
by considerations of computatlona.l cost {both CPU times and RAM required for the large full
matrices generated). Future increases in computing power will improve the situation (and see (28]
for a recent implementation for an acoustic scattering problem on a parallel processor), But there
are also very significant algorithmic developments underway in thé boundary element treatment of
wave scattering problems which space does not permit me to mention in detail. Briefly, there are
prospects for bringing down both the main costs of the method - construction of the full matrix in
(34) and the subsequent solution of the linear system - by iterative solution techniques {multigrid
and Krylov subspace methods [3], and other methods for the construction of approximate matrix
inverses [1]) and by compression techrniques which avoid explicit construction of the full matrix
(panel clustering [30], multipole methods [16], wavelet methods {21)). For the particular integral
equation (27), in the first instance, research is currently underway at Brunel [51], using some of
these techniques, to reduce the computation time from one proportional to N2 or N2, where N is
the number of boundary elements, to one proportional to Nlog V.

Undoubtedly, there is ample scope for the development, by mathematicians and engineers, of more
sophisticated and powerful boundary element methods for outdoor noise problems, and for their
use as a tool in the further refinement of ocutdoor noise control measures.

8. ACKNOWLEDGEMENTS ‘

The work reviewed above owes much to my many collaborators and research students. 1 mention
in particular Donald Crombie, Philip Morgan, Andrew Peplow, Mizanur Rahman, and Chris Ross,
and my collaborators Kirill Horoshenkov and David Hothersall at the University of Bradford and
Greg Watts at the Transport Research Laboratory. This work is supported by a research grant
from the Engineering and Physical Sciences Research Council.

9. REFERENCES

[1] S AMINI, ‘An iterative method for the boundary element solution of the exterior acoustic prob-
lem’, J. Comp. Appl. Math., 20 p.109 (1987)

{2 § AMINI & § M KIRKUP, ‘Solution of Helmholtz equation in the exterior domain by elementary
boundary integral methods’, J. Comp. Phys., 118 p.208 (1985)

{3) K E ATKINSON, ‘The Numerical Solution of Integral Equations of the Second Kind’, CUP
(1997).

'[4] G BRUHN & W WENDLAND, ‘(iber die niherungsweise Lasung von linearen Funktional-
gleichungen’, in Funclionalanalysis, Approzimations-theorie, Numerische Mathernatik, Birkliiuser

Proc.l.O.A. Vol 19 Par1 8 (1997) 47



Proceedings of the Institute of Acoustics
BEM IN OUTDOOR PROPAGATION

(1967) .

[5] A J BURTON & G F MILLER, ‘The application of integral equation methods to the numerical
solution of some exterior boundary value problems’, Proc. R. Soc. Lond. A, 323 p. 201 (1971)
[6] SN CHANDLER-WILDE & D C HOTHERSALL, *Sound propagation above an ithomogeneous
impedance plane’, J. Sound Vib., 98 p.475 (1985)

(7] 5§ N CHANDLER-WILDE& D C HOTHERSALL, “The boundary integral equation method in
outdoor sound propagation’, Proc. fnst. Acoust., 9 p.37 (1987)

(8} S N CHANDLER-WILDE & M J C GOVER “On the application of a generalization of Toeplitz -

matrices to the numerical solution of integral equations with weakly singular convolution kernels’,
IMA J. Num. Anal., 9 p.525 (1989)

(9 S N CHANDLER-WILDE, D C HOTHERSALL, D H CROMBIE, & A T PEPLOW, ‘Effi-
ciency of an acoustic screen in the presence of an absorbing boundary’. in Ondes Acoustiques
et Vibratoires, Interaction Fluide-Structures Vibrantes, Publ. du CNRS Lab. de Mécanique et
d’Acoustique No. 126, p.73 (1991)

(10} S N CHANDLER-WILDE& D C HOTHERSALL,'On the Green'’s Function for Two-Dimensional
Acoustic Propagation Above a Homogeneous Impedance Plane', Res. Rept., Dept Civ. Eng., Univ.
Bradford. (1991)

[11] S N CHANDLER-WILDE& D C HOTHERSALL, ‘Efficient calculation of the Green’s function
for acoustic propagation above a homogeneous impedance plane’, J. Sound Vib., 180 p.705 (1995)
[12] S N CHANDLER-WILDE& D C HOTHERSALL, ‘A uniformly valid far field asymptotic ex-
pansion for the Green's function for two-dimensional propagation above a homogeneous plane’ J.
Sound Vib., 182 p.665 (1995)

[13] § N CHANDLER-WILDE, ‘The impedance boundary value problem for the Helmholtz equa-
tion in a half-plane’, Math. Meth. Appl. Sci., 20 p.B13 (1997) '

(14] 5 N CHANDLER-WILDE& A T PEPLOW, ‘A boundary integral equation formulation for
the Helmholtz equation in a locally perturbed half-plane’, submitted to J. Integral Eq. Appl.

(15] G CHEN & J ZHQU, ‘Boundary element methods’, Academic Press (1992)

(16] J M SONG, C C LU, & W C CHEW, ‘Multilevel fast multipole algorithm for electromagnetic
scattering by large complex objects’, JEEE Trans. Ant. Prop., 45 p.1488 (1997)

[17] D COLTON & R KRESS, ‘Integral equation methods in scattering theory’, Wiley (1993)

(18] D H CROMBIE, ‘Novel designs for road traffic noise barriers’, PhD Thesis, Univ Bradford
(1993)

(19] D H CROMBIE& D C HOTHERSALL, ‘The performance of multiple noise barriers', J. Sound
Vib., 176 p.459 (1994)

(20) D H CROMBIE, I C HOTHERSALL, & S N CHANDLER-WILDE, ‘Multiple-edged noise
barriers', Appl. Acoust., 44 p.353 (1995) )

[21] W DAHMEN, S PROSSDORF, & R SCHNEIDER, ‘Wavelet approximation methods for pseu-
dodifferential equations 1I: matrix compression and fast solution’, Adv. Comp. Math., 1 p.259
(1993)

[22] A DAUMAS, ‘Etude de la diffraction par un écran mince disposé sur le sol’, Acustica, 40 p.213
(1978) ‘

(23] M E DELANY & E N BAZLEY, ‘Acoustic properties of fibrous absorbent materials’, Appl.
Acoust., 3 p. 105 (1970)

48 Proc.1.Q.A. Vol 13 Part 8 (1997)




Proceedings of the Institute of Acoustics
BEM IN OUTDOOR FROPAGATION ‘ !

[24] L DEMKOWICZ, ] T ODEN, M AINSWORTH, & P GENG, ‘Solution of elastic scattering
problems in linear acoustics using & — p boundary element methods’, J. Comput. Appl. Math., 36
p-29 (1991)

[25] D DUHAMEL, ‘Efficient calculation of the 3-dimensional sound pressure field around a noise
barrier’, J. Sound Vib., 197 p.547 (1996)

[26] I DURNIN & H L BERTONI, ‘Acoustic propagation over ground having imhomogeneous sur-
face impedance’, em J. Acoust. Soc. Am., 70 p.852 (1981)

f271 P GENG, ] T ODEN, & L DEMKOWICZ, *Numerical solution and a posteriori error esti-
mation of exterior acoustics problems by a boundary element method at high wave numbers’, J.
Acoust, Soc. Am., 100 p.335 (1996).

[28] P GENG, J T ODEN, & R A VAN DE GEIJIN, *Massively parallel computation for acoustical
scattering problems using boundary element methods’, J. Sound Vib., 181 p.145 (1596)

[29] D HABAULT, ‘Sound propagation above an inhomogeneous impedance plane: boundary inte-
gral equation methods’, J. Seund Vib., 100 p. 55 (1985)

[30] W HACKBUSCH & Z NOWAK, ‘On the fast matrix multiplication in the boundary element
method by panel clustering’, Numer. Math., 54 p.463 (1989)

(31] J N B HARRIOTT, S N CHANDLER-WILDE& D C HOTHERSALL, ‘Long distance sound
propagation over an impedance discontinuity’, J. Sound Vib., 148 p.365 (1991)

[32) D C HOTHERSALLE S N CHANDLER-WILDE, ‘Prediction of the attenvation of road traffic
noise with distance’, J. Sound Vib., 115 p.459 (1987)

(33] D C HOTHERSALL, 5 N CHANDLER-WILDE, & N M HAJMIRZAE, ‘Efficiency of single
noise barriers’, J. Sound Vib., 146 p.303-322. (1991)

[34] D C HOTHERSALL, D K CROMBIE, & S N CHANDLER-WILDE, ‘The performance of
T-profile and associated noise barriers’, Appl. Acoust., 32 p.269 (1991)

{35] D C HOTHERSALL& I N B HARRIOTT, ‘Approximate models for sound propagation above
multi-impedance plane boundaries’, J. Acoust. Soc. Am., 97 p.318 (1995)

[36] D C HQTHERSALL, K V HOROSHENKOV, & § E MERCY, ‘Numerical modelling of the
sound field near a tall building with balconies near a road', J. Sound Vib., 198 p.507 (1996)

(37 K V HOROSHENKOQV, S N CHANDLER-WILDE, &£ D C HOTHERSALL *On the behaviour
of some existing models for the acoustic properties of rigid fra.me porous media’, submitted to J.
Acoust. Soc. Amer.

[38] D A HUTCHINS, H W JONES, & L T RUSSELL, ‘Mocdel studies of barrier performance in
the presence of ground surfaces. Part II-different shapes.’, J. Acoust. Soc. Am., 75 p. 1817 (1984)
(39] 1 ISEI, T F W EMBLETON, & J E PIERCEY, ‘Noise reduttion by barriers on finite impedance
ground’, J. Acoust. Sec. Am., 67 p.46 (1980)

[40) Y KAWAI & T TERAI, ‘The application of integral-equation methods to the calculation of
sound attenuation by barriers’, Appl. Acoust., 31 p.101 {1990)

(41] R E KLEINMAN & G F ROACH. Boundary integral equations for the three- dimensional
Helmholtz equation’, STAM Hev., 16 p.214 (1974) |

[42] M KOYASUTA & M YAMAS]-[ITA. *Scale mode] experiments on noise reduction by acoustic
barrier of a straight line source’, Appl. Acoust., 3 p.233 (1973)

[43] L A DeLACERDA, L C WROBEL. & W ) MANSUR, ‘A dual boundary element formulation
for sound propagation around barriers over an impedance plane’, J. Sound Vib., 202 p. 245 (1997)

|

Proc.l.0.A. Vol 19 Part 8 (1997) 49



Proceedings of the Institute of Acoustics
BEM IN OUTDOOR PROPAGATION

(44] Y W LAM & § C ROBERTS, ‘A simple method for accurate prediction of finite barrier inser-
tion loss’, J. Acoust. Soc. Am., 93 p.1445 (1993)

[45} Y L LI, S J FRANKE, & CH LIU, ‘Wave scattering from a ground with a Ganssian bump or
trough in an inhomogeneous medium’, J. Acoust. Soc. Am., 94 p.1067 {1993)

{46] D N MAY & M M OSMAN, 'Highway noise barriers: new shapes’, J. Sound Vib., 71, p.73
(1980)

[47} P A MORGAN, C R ROSS, & S N CHANDLER-WILDE, ‘An efficient boundary element
model for the performance of parallel noise barriers’, Proc. Inst. Acoust., 17 p.465 (1995)

[48] P A MORGAN, C R ROSS, & S N CHANDLER-WILDE, ‘An efficient boundary element
method for noige propagation from cuttings’, Proc. INTERNOISE,Book 6, p.3011 (1996)

[49] A T PEPLOW & 5 N CHANDLER-WILDE, ‘Noise propagation from a cutting of arbitrary
cross-section and impedance’, submitted to J. Sound Vib.

[50] J M PARK & W EVERSMAN, ‘A boundary element method for propagation over absorbing
boundaries', J. Sound Vib., 175 p.197 (1994)

(51] M RAHMAN, ‘Numerical treatment of a class of second kind integral equations on the real
line’, MSc Dissertation, Brunel Univ. (1996)

[52] K B RASMUSSEN, ‘Sound propagation over non-flat terrain’, Danish Acoust. Lab. Rep. No.
35 (1982)

(53] 5 ROBERTSON, W L SIEGMANN, & M ] JACOBSON, ‘Low frequency sound-propagation
modeling over a locally reacting boundary with the parabolic approximation’, J. Acoust. Soc.
Amer., 98 p.1130 (1995)

[34] C R ROSS, ‘Direct and inverse scattering by rough surfaces’, PhD Thes., Brunel Univ. (1997)
[55) E M SALOMONS, A C GEERLINGS, & D DUHAMEL, 'Comparison of a ray model and a
Fourier-boundary element method for traffic noise situations with multiple diffractions and reflec-
tions’, Acustica, 83 p.35 (1997)

[56] R SEZNEC, ‘Diffraction of sound around barriers: use of the boundary elements technique’,
J. Sound Vib., 73 p.195 (1980) ’

[57] G R WATTS, D H CROMBIE, & D C HOTHERSALL, ‘Acoustic performance of new designs
of traffic noise harriers: full scale tests’, J. Sound Vib., 177 p.289 (1994).

(58] G R WATTS & P A MORGAN, 'Acoustic performance of an interference type noise barrier
profile’, Appl. Acoust., 49 p.1 (1995)

[539] G R WATTS, 'Acoustic performance of a multiple edge noise barrier profile at motorway sites’,
Appl. Acoust,, 47 p.47 (1996)

[60] G R WATTS, 5 N CHANDLER-WILDE, & P A MORGAN, ‘The combined effects of porous
asphalt surfacing and barriers on traffic noise’, submitted to Appl. Acoust.

50 Proc.).O.A. Vot 19 Part 8 (1997)




