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1. INTRODUCTION

Speech intelligibility is an important concern in spaces and transmission channels such as lecture
rooms, theatres. auditoria, PA systems and telephone lines. Subjective and objective methods are
can be used to quantify speech intelligibility. Subjective methods. based on human perception. use
real yet controlled speech sounds, for example phonetically balanced word lists. This enables
assessments to be made using quasi-natural speech excitations. Nevertheless, it is known that the
involvement of human perception introduces reproducibility and repeatability problems. and makes
tests lengthy and expensive to conduct. Objective methods, represented by parameters such as
STI. are physical methods using artificial test signals and measurement instruments to obtain more
accurate and repeatable results. However, the use of artificial test signals as stimuli hinders
occupied measurements due to logistical and technical obstacles. Many dilemmas encountered in
occupied measurements could be overcome it naturally occurring sound sources such as music or
speech could be used. The endeavour to develop such a non-invasive method is not new. for
example Steeneken and Houtgast proposed a method to estimate STls by compaan the envelope
spectra of source and received running speech. but at a cost of compromised accuracy [1].
Although the attractiveness of this approach is well appreciated, it appears to be rarely used in
practice.

Inspired by the fact that human hearing can sensitiver differentiate reverberation times to a fraction
of a second. artificial intelligence methods were applied to room acoustic parameter estimation
problems by the authors [2.3.4]. In particular. artificial neural networks (ANNs) with purpose
designed pre—processors were developed to extract reverberation parameters and STls from
speech utterances. The work began by looking at a time domain approach with separated
utterances. and more recently has moved to running speech as a source excitation. This paper
presents the recent refinements of the neural network method to obtain accurate STI values from
received running speech especially arbitrary speech. The proposed method exploits the envelope
spectrum method developed bySteeneken and Houtgast. refining the method with modern digital
signal processing techniques. The significance of the proposed method is that it potentially enables
source independent measurement. i.e. STI from received arbitrary speech. Crucially. this extraction
is done without monitoring the speech at its source.

2. SPEECH ENVELOPE SPECTRUM METHOD

Consider the method for obtaining the envelope spectra as developed by Steeneken and Houtgast
[1]. A short rectangular window with a width of T is moved along a running speech signal s{t) of
length L. the square of the windowed portion divided by the average value of the squared long-time
speech gives intensity function i(t).

  

T L

i(t)=s2(t) /s2(t) (1)
The envelope spectrum is defined as the spectrum of this intensity function. The process is
illustrated in Figure 1. In the original technique, envelope spectra were estimated by repeatedly
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passing squared and accelerated speech through 1/3-octave acoustic filter banks and therefore the
resolution was restricted by the hardware filter banks available. 45- 60s speech extracts were found
appropriate to secure reasonably stable envelope spectra and fourteen data points at the centre

frequencies of 1/3 octave bands from 0.63 Hz to 12.5 Hz were found adequate for speech

intelligibility assessments.

1/3 Octave
band filter
bank based
real time
spectrum

analyser

 

Figure 1. Traditional envelope detector and envelope spectrum analyser

Steeneken and Houtgast suggested that the Modulation Transfer Function (MTF) could be

approximately obtained from the difference between the envelope spectra (in dB) of the original and .

transmitted speech [1]. The validity of this approximation was demonstrated by some measurement j
results: the STls obtained from envelope spectra of running speech and those obtained using

standard method gave reasonably good agreement (a correlation coefficient of 0.971). However. in
both the original paper and the standards [1.5], it is pointed out that extraction MTF from envelope

spectra has compromised accuracy. Once the MTF is obtained, the STI can be further calculated by

a series of averaging, limiting and weighting {5,6}. l

The use of envelope subtraction can be viewed asa linear approximation of the true input-output

system as shown in Figure 2. in the frequency domain, the transfer function Ham) of a room
describes the input-output relationship of the fine structure of signals in a transmission system,

while modulation transfer function MTF(F) approximately relate the (low frequency) envelopes of
signals.

m 1
Figure 2. A speech transmission system as an envelope transmission system. V. and V0 are the

input and output spectra, EV. and EV. are the input and output envelope spectra.

Modulation transfer functions describe transfer characteristics of low frequency, pure tone
modulated. stationary noises. The errors incurred when using speech envelope spectrum
subtraction to determine MTFs mainly stem from the deviations of speech from the pure tone
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modulated noise. This can be further broken down into two aspects: (i) A speech signal is a
complicated non-stationary stochastic process. The spectrum of each individual speech extracts
deviates from the noise carrier used for standard MTF measurements. (ii) Envelopes of spech are
complicated non-periodic signals. while the standard STI requires periodic modulation. It is known
that speech signals are extremely difficult to statistically model. As a result, traditional mathematical
tools are not readily available to precisely formulate the relation of MTF and the difference of
original and transmitted speech envelopes. Artificial neural networks are therefore considered to
statistically learn from examples to accurately map such relationships. Furthermore, explicit
knowledge of the input speech signal will not be given to the artificial neural network; this is a more
realistic simulation of how humans perceive room acoustics, but makes the ST! extraction problem
much more difficult.

3. ARTIFICIAL NEURAL NETWORK METHOD

Artificial neural networks can learn to compensate for varying statistical features of speech through
examples. in fact, neural networks are particularly suitable for such tasks [6]. The neural network
can also incorporate the computation of STI from the MTF using their non-linear function mapping
capability, Supervised artificial neural networks are therefore considered to accurately map received
speech excerpts onto STls via an envelope spectrum estimator. The framework of the proposed
neural network method is illustrated in Figure 3. tn the training phase. the ANN is given a large
number of reverberated speech examples and the corresponding STl values in a format of speech
example-STI pairs. The neural network learns statistically from examples and performs non-model
based regression under a supervised training regime. This is the training phase illustrated in Figure
3(a). The neural network model used here is the well-known multi-Iayer feed-forward network and is
trained by the back propagation algorithm. The training is to iterat'wely update internal parameters of
the artificial neural network. so that the mean square error between the neural network output and
the true objective parameter values is minimised over all training examples. Once trained, the ANNs
can correctly predict acoustic parameters from received speech samples not necessarily included in
the training phase - Figure 3(b).
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Figure 3. illustration of generic ANN method for objective parameter extraction
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The signal pre-prooessor plays a very important role in the success of applying neural networks in'
this case. In this case, a considerable amount of data reduction is required. An improved envelope
spectrum estimator derived from classical STI system is adopted.

3.1 The Pro-processor

Envelopes of speech signals are detected as illustrated in Figure 4. Figure 5 is a block diagram of
the pre-processor.

Figure 4. An example of
detected envelope;

top: speech extract;

middle: envelope;

bottom: Low pass filtered
envelope).
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time [5]

Not surprisingly, It is found that the window width and FFT length of the spectrum estimator has a
significant impact on the accuracy of the process. According to the standard STl method, 14 data
points at central frequencies of 1/3-octave bands from 0.63 to 12.5 Hz are used, Such a frequency
domain information extraction is found adequate in training ANN on single speech extract in octave
bands.
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Figure 5. Block diagram of speech signal pre-prooessor
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3.2 Training and validating set

In order to secure good generalization. a large data set is preferable. Simulated impulse responses

are used to generate examples via convolution with anechoic speech. White noise interference is
used. A stochastic model that hypothetically covers a large number of possible room conditions (a
superset of realistic impulse responses) is used. Following the standard approach in ANN research,
the data set is split into two halves. one for training and the other for validation. The rigorous tests
are warranted by entirely separating training and validating sets.

3.3 Neural networks

Two non-linear hidden layers are used in the neural networks. The optimised number of neurons

are determined empirically. The neural network is trained under a supervised regime as an

approximator. This is achieved by randomly applying the pre-processed speech examples to the
input ofthe neural network and minimising the mean square errors between the teachers (known
STls) and the output of the neural network over all the examples in the training set. The optimisation
is done by updating the connection weights within the neural network using the ‘deita learning rule'
[7,8]. in our case. a variable training rate is used to speed training [9].

4. TRAINING AND VALIDATION RESULTS

Two sets of neural networks are trained and validated. The first set is intended to train the neural

networks to work with one particular speech extract so that the feature of that particular speech

stimulus is built into neural network; this is a one-net-one-extract approach. In the retrieve phase.

the trained ANNs give very high accuracy in STI estimations under various acoustic conditions. The

second set of ANNs are trained on a number of different anechoic speech, intending to generalize
to arbitrary speech. This is referred to as a one—net-muttipie-extract approach.

4.1 Ona-net-one-extract

The neural networks used here are expected to learn from examples to generalize all possible

impulse responses and noise interferences. It must also learn the statistical feature of that particular

speech. The maximum prediction errors found over all the tests are 0.02 STI as shown in Figure 7.

0.02

Figure 7. Maximum prediction
errors found in validation tests
using a one-net—one-extract
basis.
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This indicates the proposed method can achieve an accuracy comparable to those obtained using
the standard STI method. which typically also has a standard deviation of 0.02. The correlation
coefficient between the ANN estimated and true STl is 0.9999. This is much higher than the 0.971
obtained when applying real speech to the traditional STl method and having input and output
information. Consequently. this method enables STI measurement by broadcasting a standard

anechoic speech extract. This is a useful additional measurement capability on top of the standard
STI method. It enables a test signal to be broadcast which being naturalistic which will disturb
occupants less. and so can form a non-invasive. in-use test method. It would be even more useful.

however. if the technique could work with arbitrary speech.

4.2 One-net-multlple-extract

Training one neural network on several speech extracts is explored. This is intended to generalise
the network to arbitrary speech so that one network can estimate STI from received speech not
seen in training. Furthermore. it is hoped to do this without resorting to monitoring the source. Initial
investigation shows that ANN system has some potential to achieve this source independence.

it is necessary to update the traditional envelope spectrum estimator to improve accuracy. Since the

development of the original STI method, digital signal processing techniques have advanced greatly
and these can be exploited to give better quality information to the neural network. 18 different

anechoic speech examples. The examples consist of 3 contrasting texts read by 6 untrained native
English speakers. Figure 8 shows the maximum errors found in the validation tests.

0.15

Figure 8. Maximum prediction
errors found in arbitrary speech
cases.
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Figures 9 is another illustration of the accuracy obtained when using arbitrary speech. The
maximum prediction error for STI found in all cases is 0.13. and the correlation coefficient between

actual and predicted STI is 0.995. Problems arise because the low frequency statistics of the

anechoic speech are not sufficiently stable for accurate estimation. These low frequency statistics
alter as the text, speaker and utterance are changed. Consequently. better accuracy can be

obtained by averaging over several different speech extracts to stabilise the low frequency

statistics. especially using both male and female speakers. When averaging over three different
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.0 on Figure 9. An example of 50 tests
with an arbitrary speech extract
not included in training.

A
N
N

p
r
e
d
i
d
e
d
S
T

Iv
al

ue
_c

>
o

4:
07

 

0 0.2 0.4 0.6 0.8 1

Actual STI value '

speech extracts read bydifferent narrators. prediction errors can normally be reduced to less than

0.1. When averaging is carried out over even more extracts, accuracycan be further improved.

Figure 10 shows the ANN estimated values obtained by averaging over 6 speech excerpts read by

different narrators. In this case. estimation error drops down to 0.05, which although not as good as

the standard method, is probably accurate enough for STI evaluation. This method, however. has

its limitations. It is unrealistic to change narrators so frequently in many in-use cases. Moreover.

averaging may not always produce better accuracy. since one may have several narrators having

similar reading styles. A more sophisticated approach is therefore sought.
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3 Figure 10. An example of 50
'5 tests averaged over 6 arbitrary
8 0.5 speech extracts not included in

.3 training.

g a aZ .

E
0.2

-
t
u
r

.4
I
l
r
I
u
l
l

.4
I
l
r
I
r
l
.

 

u 0.2 u.» 0.5 0.8 1

Actual STI vdue

Proc.l.O.A. Vol 23 Pan 8 (2001) 67  



  

  

 

   

   

  

  
   

   

 

   

   

  

   

 

Proceedings of the Institute of Acoustics

If more information regarding the occunences of words, syllables and phonemes could be given to
the neural network, the network would have greater ability to adapt to different texts and different
reading styles. This can be easily achieved by giving the network input speech knowledge, but it is
of fundamental interest to try to get a system to work with output knowledge only. After all, trained
humans can estimate speech intelligibility without direct knowledge of particular anechoic speech
extracts. There are various ways of achieving this. For example. a simple threshold detector can be
used to locate the location of syllables or utterances, and this additional information fed to the
neural network. Using these types of techniques, the maximum prediction error reduces to 0.06 -
0.08 STI. If averaging over more than one speaker is used in conjunction with this technique,
prediction errors can be further reduced. Problems arise, however, because standard techniques for
syllable detection do not work in noise or highly reverberant conditions. Consequently, the improved
accuracy only occurs for high values of STI.

5. DISCUSSIONS AND CONCLUSIONS

A neural network method that estimates STI from received running speech signals is developed and
validated via simulations.- The accuracy is comparable to that achieved bymeasurements with
standard artificial test signals when limited to a one~net—one-extract approach or a closed set of
speech examples. Source independent extraction of STI \m'th knowledge only of the received
speech is explored. it seems that the proposed ANN method has a certain capability to adapt to
different speakers and texts. The actual and ANN estimated STls show reasonable agreement
when testing with speech extracts not seen previously by the ANN. Currently the pre-processor
must reject 99.99% of the speech data to make the input vectors to the neural network sufficiently
small to allow training. The question that remains unanswered, is whether in this rejected data. 1
there is information to enable the neural network to deal with the arbitrary speech, and whether a
method to extract this data can be developed.
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