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1 INTRODUCTION 
This paper studies the scattering from finite rough surfaces using specular reflection and edge 
diffraction impulse responses applied to polygonal deterministic approximations of such surfaces. 
This approach has been used earlier for the modelling of scattering from rough sea surfaces with 
the wedge assemblage (WA) method1. Here, we apply it to calculate the scattering coefficient, using 
the method by Mommertz2, based on the reflected sound field in all directions over a half-space. 
Embrechts et al3 studied the scattering coeffficient using the Kirchhoff approximation. They point out 
a number of  well-known limitations for the Kirchhoff approximation which restricts its use in some 
ways. It is the purpose of this paper to compare calculations of the scattering coeffficient using both 
the Kirchhoff approximation and a method4 which is derived from the exact Biot-Tolstoy edge 
diffraction impulse response expression5. This Biot-Tolstoy based method is valid for rigid surfaces 
only, which has been studied here. The wedge assemblage method is also based on the Biot-
Tolstoy expression1, and the difference between the WA method and the method used here lies in 
different, but equivalent, expressions for first-order diffraction, and different expressions for higher-
order diffraction. 
 
The Kirchhoff approximation has proven to be accurate in many cases6. The main limitations are 
that the incident and reflected sound waves must have angles that are smaller than approximately 
60 degrees relative to the surface normal, and the correlation length of the plate's roughness profile 
must be greater than the wavelength. In underwater acoustics many situations seem to stay within 
these restrictions but in room acoustics where the sounds fields are more or less diffuse, the 
incidence and reflections angles will cover a wide range. Furthermore, the wall surfaces used in 
buildings rarely have the slowly undulating profile that the correlation length limitation implies. 
A special type of surface used in rooms is the Schroeder-diffusor type. These have wells of different 
depths, quite sharp edges and do not directly fulfil the requirements for the Kirchhoff approximation. 
Cox has studied such surfaces extensively, using variants of 2D and 3D boundary element 
techniques7. The boundary element method can be considered a reference solution method which 
is efficient at low frequencies for full 3D modelling. 
 
The scattering coefficient is an important input parameter for room acoustic prediction methods that 
use a stochastic approach to model surface scattering such as ray tracing or radiosity. The method 
used here is purely deterministic and can act as an important reference method for studying quite 
arbitrary geometries. On the other hand, it is not feasible to use such a deterministic method for 
modelling all rough surfaces of a large room. The most promising use of the specular reflection + 
edge diffraction methods in computational room acoustics is probably to correctly handle the 
influence of the finite sizes of larger wall elements, and scattering objects like railings and 
protruding edges. In addition in can serve as a alternative reference method for comparisons with 
simplified techniques. Being a time-domain method, it can also give insight into the statistical 
properties of the impulse responses of rough surfaces, which can be used for generating impulse 
responses that represent rough surfaces. 
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2 CALCULATION METHOD 

2.1 Scattering coefficient 

In this study the room acoustics scattering coefficient is the primary quantity that has been 
calculated. As shown by Mommertz2, the scattering coefficient δ can be found from a detailed 
measurement, or prediction, of the scattered sound field from a finite rough surface, but also 
requires the response from a flat rigid reference surface. The scattering coefficient is then  
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where p1 is the (complex) amplitude of the reflected sound pressure from the scattering surface, 
and p0 is the (complex) amplitude of the reflected sound pressure from the flat, rigid reference 
surface of the same size as the scattering surface. Both p1 and p0 should be measured/predicted in 
a number of directions θi. The expression in eq. (1) is based on the assumption that the scattered 
response is statistically independent from the flat reference surface response. 
 
2.2 Diffraction modelling 

As mentioned above, the approach used here, illustrated in Fig. 1, models scattering by finding the 
valid specular reflection and edge diffraction paths for a polygonal approximation of a rough 
surface. This method can be used both for the flat reference surface and the rough surface. 

 
Figure 1 Illustration of a part of a rough surface which is modelled as a polygonal approxi-
mation. A specular reflection is shown in heavy line and edge diffraction waves are indicated by 
thinner lines. 
 
Different methods are available for edge diffraction modelling4,8,9. For rigid or pressure-release 
surfaces exact expressions exist for the impulse responses of infinite wedges4,5 and they are the 
basis for the method used here4. Specular reflections are taken into account with the ordinary image 
source method (employing visibility and obstruction checks), and the edge diffraction components 
are included using similar visibility and obstruction checks10. The edge diffraction impulse 
responses are calculated by placing secondary sources along each edge. The contribution from an 
edge to the total impulse response, hp(t), is then described by a line integral along the edge 
coordinate z, 
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where β is a directivity function for the secondary edge sources. These impulse responses will be 
denoted ED-IRs in the following, for Edge Diffraction Impulse Responses. Depending on which 
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directivity function is chosen, different models can be implemented. The new method4, is 
implemented using the following source directivities, 

  βnew = β++ + β+− + β−+ + β−− ,       (3a) 

where 

      

β±m =
sin ν π ±θS m θR( )[ ]

coshνη − cos ν π ±θS m θR( )[ ]
     (3b) 

and 
  
η = cosh−1 1+ sinα ⋅sinγ

cosα ⋅cosγ
.       (3c) 

 
Figure 2 The geometry of an edge that is created by two semi-infinite planes drawn with 
solid lines, with a source position, S, and a receiver position, R, indicated. The planes drawn with 
dashed lines are virtual planes that contain S and R. 
 
As illustrated in Fig. 2, the angles θS and α are the incidence angles for the wave hitting an edge 
position z, and the angles θR and γ are the scattering angles towards the receiver. The wedge angle 
is described by θw, ν = π / θw is the wedge index, and m and l are the path lengths to and from the 
edge point. The Kirchhoff approximation is also possible to write in this form, by rewriting the line 
integral expression that result from the Maggi-Rubinowicz transformation8: 

    βKirchhoff = a1β1 + a2β2         (4a) 

where  
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It should be noted that the term coshη in eqs. (4b) and (4c) leads to a cancelling of the cosh 
function, see the definition of η in eq. (3c). This implementation of the Kirchhoff approximation also 
gives edge diffraction impulse responses, ED-IRs, so it is straightforward to run a direct comparison 
between the two methods. 
 
When impulse responses are calculated, the sampling frequency must be high enough to give low 
enough temporal errors, which translates to accurate phase response when the impulse responses 
are transformed to transfer functions. For cases where there are both specular reflections and edge 
diffraction components that arrive close in time, very accurate temporal responses are needed. 
Here the specular reflections are generated by letting a continuous-time dirac pulse be represented 
by two pulses in the two time samples nearest the exact arrival time, and a simple linear weighting 
as used by Vanderkooy11. This scheme leads to an accurate phase response of the corresponding 
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transfer function but a magnitude roll-off at relatively low frequencies. The ED-IRs are calculated 
with the approach in Ref. 4, which for most source-receiver geometries can employ a simplified 
numerical integration. For using eq. (1), the impulse responses are transformed to the frequency 
domain. 
 
2.3 Surface generation 

A rough plate was simulated by giving a rectangular plate a random profile. To keep the 
computational load down, a one-dimensional random profile was chosen even if the method can 
handle plates with two-dimensional random profiles1 and even arbitrary three-dimensional objects 
as long as they are approximated as polygonal assemblages. A square rigid plate, 1 m by 1 m, was 
divided into 255 parallel strips that were generated by dividing one of the two plate edges into 256 
evenly distributed points. These points were then given a random height (perpendicular to the plate) 
according to a gaussian distribution. A desired correlation length was implemented by convolving 
this random sequence with the corresponding "smearing filter", equivalent to the method used by 
Thorsos6 and Embrechts et al3. A simple gaussian profile was chosen in order to make comparisons 
with other results easier even though arbitrary distributions could be defined. 
 
3 RESULTS 

3.1 Calculation parameters 

Samples of rough, perfectly rigid, 1m by 1m plates were generated with four different correlation 
lengths, as described in section 2.3. Fig. 3 shows the profiles of these plates, with the correlation 
lengths 512 mm, 256 mm, 128 mm and 64 mm. In addition, a flat rigid plate was used for the 
reference case which is needed for calculating the scattering coefficient according to eq. (1). 

    
Figure 3 Profiles of plate realizations with different correlation lengths. The plates have a 
side length of 1 m and a roughness with a standard deviation σ = 18 mm. The correlation lengths 
are, from left to right, 512 mm, 256 mm, 128 mm, and 64 mm.  
 
A single source was placed in the far field, at a distance of 1000 m, either right above the plate, i.e., 
with an incidence angle of 0 degrees, or with an incidence angle of 45 degrees. Receiver positions 
were distributed at the same distance over the hemisphere above the plate. A total of 638 receiver 
positions were used so that the maximum angle difference (in the θ- and ϕ-directions) between 
adjacent receiver positions was 6 degrees. A weighting factor is introduced into eq. (1) to take into 
account that the 638 receiver positions represent slightly different solid angles. For the chosen plate 
size, the used angular resolution should be sufficient for frequencies up to 2.8 kHz according to the 
criterion suggested by Embrechts et al3. For all plates, the same roughness amplitude was used, 
with a standard deviation, σ, of 18 mm. 
 
Edge diffraction impulse responses, ED-IRs, were calculated for each of the plates and for all 
receiver points. Both the new method, eqs. (2)-(3), and the Kirchhoff impulse response method, 
eqs. (2),(4) were used for all cases. In the results diagrams, these results will be marked as "New 
ED-IR" and "Kirchhoff ED-IR", respectively. Also, the results using the "characteristic function" 
model, presented by Embrechts et al3 are included here. It should be noted that this function is 
based on the Kirchhoff approximation and gives the scattering coefficient as 
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where ξi are the profile heights along the plate. This characteristic function is expected to give 
results that are similar to the Kirchhoff ED-IR method, as long as the assumptions behind the 
Kirchhoff approximation are fulfilled. 
 
3.2 Influence of correlation length 

As pointed out by Embrechts et al3, the Kirchhoff modelling requires that the relations between the 
plate size, Lx, the correlation length, T, the surface roughness, σ, and the wavelength, λ, fulfill T > 
λ, T > 2σ, T << Lx. This was studied for the four different plates in Fig. 3. All of these four plates fulfil 
T > 2σ.  The length of the plate, Lx, is clearly not much larger than T for the first plates. The first 
criterion that is listed, T > λ, will give different frequency ranges for the four plates. 
 
Examples of ED-IRs for the reference plate and the two plates with correlation lengths of 512 mm 
and 256 mm are shown in Fig. 4 together with the corresponding transfer functions. The sound 
incidence was perpendicular, and a receiver position was placed at 42 degrees relative to the 
surface normal, and with an azimuthal angle of 42 degrees. All three responses have roughly the 
same length in time, with a similar positive first half and negative second half. The varying heights 
of the rough plates clearly distort the basic  shape of the flat plate, and the sharper the peaks of the 
plate profile, the sharper peaks will be seen in the plate impulse response. If higher-order diffraction 
components are included, they will show up as weaker components spread out over longer time. 
For plates with steeper slopes and for more grazing source/receiver angles there will also be 
specular-diffraction combinations. In the frequency domain, the three responses are very similar at 
low frequencies, as expected, and with interference patterns that are also quite similar at low 
frequencies. 
 
One interesting observation that could be used for generating stochastic impulse responses that 
should represent rough surfaces is that for plates with large numbers of peaks and valleys in the 
profile, there will be quite a noise-like response within the time-window defined by the plate size. 
Such a noise-like response, with the correct level and spectral shape, could then be used for 
generating stochastic impulse responses. 
 
The scattering coefficient was calculated using eq. (1) and the results are shown in Fig. 5, for the 
perpendicular sound incidence. Results calculated with both the new ED-IRs and the Kirchhoff ED-
IRs are presented, together with the characteristic function result in Eq. (5). 
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Figure 4 Examples of edge diffraction impulse responses and the corresponding transfer 
functions for the flat plate and the two plates with the longest correlation lengths in Fig. 4. The 
sound incidence was perpendicular and the receiver was placed at 42 degrees relative to the 
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surface normal and with an azimuthal angle of 42 degrees. The time scale and the impulse 
response scale use arbitrary references. The transfer function is relative to the incident sound wave. 
A few things can be observed in Fig. 5: first, the new method and the Kirchhoff method generally 
agree very well  but differ at lower frequencies. The frequency range that should be valid for the 
Kirchhoff approximation according to the criterion T > λ is indicated with the grey bar on the 
horizontal axis and it can be seen that the Kirchhoff ED-IR results and the results with the new ED-
IR method deviate more outside this range. A bit surprisingly, the characteristic function results 
agree well with the new ED-IR results, even when the Kirchhoff ED-IR results differ. 
Finally, it can also be seen that for the lowest frequencies, which corresponds to the lowest values 
of σ/λ, the calculated values of the scattering coefficient seem too high, with both the new ED-IR 
method and the Kirchhoff ED-IR method. This indicates that there could be a need to include 
multiple diffractions, and this is especially pronounced for the shortest correlation length. It should 
be noted that the scale for σ/λ is linear, as opposed to the logarithmic frequency scale in Fig. 4, in 
order to focus on the frequency range where the scattering coeffficient is changing the most. 
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Figure 5 Scattering coefficient for the four plates in Fig. 3 with the correlation lengths (a) 512 
mm, (b) 256 mm, (c) 128 mm, and (d) 64 mm. The roughness had a standard deviation of 18 mm 
and the sound incidence was perpendicular. The grey bars on the σ/λ-axis indicate the validity 
region for the Kirchhoff approximation (T>λ). 
 
3.3 Non-perpendicular incidence 

A second source position was run, with an angle of incidence of 45 degrees, which should be within 
the validity region for the Kirchhoff approximation. Fig. 6 shows the calculated scattering coefficients 
for this source position and it can be seen that in general, the deviation between the new ED-IR 
method and the Kirchhoff ED-IR method is larger for lower frequencies, and for shorter correlation 
lengths, in the same way as for the perpendicular incidence of Fig. 5. Quite large deviations result 
for the correlation length of 128 mm but this case is outside the valid frequency range for the 
Kirchhoff approximation. It could be argued that the new method gives more accurate results since 
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it doesn't suffer from the inherent limitations of the Kirchhoff approximation. On the other hand there 
are no clear rules for determining how many orders of diffraction that should be included and since 
this strongly affects the computation time, more tests are needed. 
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Figure 6 Scattering coefficient for three of the four plates in Fig. 3. Legends are the same as 
in Fig. 5. 
 
4 CONCLUSIONS 
Two methods have been demonstrated for the deterministic modelling of a rough rigid surface, both 
based on edge diffraction impulse responses. One is an implementation of the Kirchhoff 
approximation and the other is based on a new method which is exact for infinite wedges. Single 
realizations of rough surfaces were studied with the two methods and they seem to agree well as 
long as the correlation length T is larger than the wavelength λ, and this agrees with established 
criteria for the Kirchhoff method. However, for realistic surface models quite much shorter 
correlation lengths would be needed. The new method could handle such cases but would also 
require an effficient and accurate handling of all specular-diffraction combinations. 
 
The calculated scattering coefficients for single realizations are also very close to the expected 
results based on the so-called characteristic function, which is based on the Kirchhoff 
approximation. This supports the possibility to use the simple theoretical expressions for slowly 
varying surfaces. 
 
Further research is needed for comparing these results with reference solutions. The need for 
multiple orders of diffraction will be addressed in future studies. Also, edge diffraction solutions for 
non-rigid surfaces need to be developed. in order to study more realistic surfaces. 
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