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Modeling sound transmission through apertures with diffraction
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ABSTRACT
Sound transmission through an aperture in a thin wall is a classical scattering problem with various
applications in building acoustics. In particular, the use of active noise control for open windows
can be viewed as an aperture scattering problem. Diffraction-based modeling of scattering is very
efficient and accurate for convex scattering objects but has been shown to be less accurate for
the transmission through circular apertures, at low frequencies. In this study we investigate the
accuracy of edge-diffraction based modeling of sound transmission through circular and square
apertures. Reference solutions are computed with a boundary element formulation for this case.
Results confirm that the diffraction modeling gives accurate results for mid-to-high frequencies.
For low frequencies and skewed transmission angles, the diffraction-based method gives larger errors.

1. INTRODUCTION

The computation of scattering by rigid polyhedra can be done efficiently and accurately by the edge
source integral equation, ESIE, method, [1]. The ESIE method has been compared with reference
calculations with the boundary element method and was shown to give very similar results for the
scattering by a cube [2].

For non-convex scattering objects, however, the ESIE method is less accurate, as shown in [3] for
the case of a circular aperture in a thin wall. This special case of non-convex scattering geometry
was further investigated in [4], and it was shown that the lack of so-called slope diffraction in the
ESIE modeling explains the lack of accuracy. To be precise, the ESIE method computes second- and
higher-order diffraction whereas first-order diffraction is computed by the method presented in [5].
An aperture in a thin wall gives rise to first-order diffraction, according to the underlying secondary
source, or edge source, model [6]. According to the ESIE method, second-order diffraction, on the
other hand, gets zero amplitude for an aperture in a thin baffle, and as a consequence also higher-order
diffraction gets zero amplitude.
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Summers showed that the secondary source method underestimates the sound power transmission
coeflicient by 2.1 dB for very low frequencies for a circular aperture [3]. No further values were
presented by Summers, so the topic of this paper is to quantify further the difference between the
edge source model and a reference solution. The latter is computed by a boundary element method
which is formulated for the special case of an aperture in a thin wall. Parts of this work were presented
in [7].

This idealized special case is straightforward to study with numerical methods, but nevertheless
has practical relevance. The sound transmission through an open window, and through other openings
between spaces, can often be studied using a thin-wall assumption as a first model. Expanding the
study to apertures in thick walls is an important step in future studies.

2. THEORY AND METHODS

2.1. Bouwkamp’s low-frequency expressions, and an integral equation formulation

The wave transmission through an aperture in a thin rigid baffle is a classical case in both acoustics
and electromagnetics. The work by Bouwkamp serves as an early reference, with a large number
of references to other work [8]. The problem has been studied more recently as well [9], [10], [11]
and low-frequency asymptotic expressions have been derived for circular and elliptic apertures in
these studies, also for non-perpendicular incidence. As one example, the transmitted sound pressure
amplitude, puans(w, ), in the far-field, at distance r, for a perpendicularly incident plane wave of
amplitude p;, towards a circular aperture of radius a in a rigid baffle is given by Bouwkamp as a
low-frequency (LF) asymptotic expression,
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where k = w/c, ¢ being the speed of sound, and a time-harmonic factor e’ is assumed. The angle 6
is the angle with respect to the symmetry axis of the circular aperture, see Figure 1. Bouwkamp also
gave asymptotic expressions for the power transmission factor, 7 (which was found by integrating the
expression for p?, based on Equation 1, over 6), for the rigid baffle, as

Tip = % [1 + (‘—L 4 )(ka)z + 0((ka)4)] )

9 2

In addition to asymptotic solutions for a circular aperture, Bouwkamp gave an integral equation
formulation for the field in the aperture, which can be used for numerical solutions for arbitrarily
shaped apertures. One can also arrive at the integral equation from using the Rayleigh integral, which
gives the sound pressure in a point x, behind (that is, on the opposite side of the baffle, seen from
the side of the incident sound wave) the thin rigid baffle, as an integral over the aperture A, and the
evaluation of the surface integral requires knowledge of the normal particle velocity, u,, at the points
X, in the aperture,
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where r = |x — x4|. Now, if the receiver point X is placed in the plane of the baffle, inside the
aperture, an integral equation results when we view u,(x4) as an unknown function, and use the fact
that p(x4, w) is known: the sound pressure in the aperture is identical with the incident free-field
sound pressure [9]. Then
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Figure 1: Illustration of a circular aperture in a baffle, drawn with a thick line. A plane wave with
normal incident hits the aperture from the left. A receiver, at x, is positioned at an angle 8 with respect
to the aperture symmetry axis, shown with a dashed line.

Solving this integral equation numerically becomes a form of boundary element method, and the
numerical approach chosen in this study is described in the next section. It can be noted that
Equation 4 can be computed for near- and far-field receiver positions.

2.2. Numerical solution of Equation 4 - a Boundary Element Method

A simple approach is used here, subdividing the aperture into elements across which a constant
particle velocity is assumed. It is known that the particle velocity, or sound pressure gradient, becomes
singular as one moves closer to the edge of the aperture, and therefore, this simple approach converges
slowly. It will be shown, however, that adequate accuracy results in our study of square and circular
apertures. The square apertures are subdivided into equally sized elements whereas the circular
aperture is subdivided into annular rings of equal widths. Equation 4 then becomes a sum, so that
the sound pressure at a discrete point X4 ; is a sum of the contributions from the N elements,
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where the integration is over each little element A;. This discretization leads to N equations which
can be gathered in a matrix equation,
ZU =P, 6)

where U is vertical array, size (I, 1) of the unknown particle velocities (assumed constant across each
element) and P;, is also a vertical array, size (N, 1), of the known incident sound pressures at the
center points of each element. The matrix Z, of size (N, N), contains cross-impedance terms, where
term Z; ; in row i and column j gives the sound pressure at the center of element i, for a unit vibration
velocity of element j: .
jwpy (e
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Computing the integral for this Z-term is the same as calculating the sound pressure from a piston.
Importantly, the "self-term", when j = i, which has a singularity due to the fact that r — 0 inside the
element, is easily computed to high accuracy with standard methods for the radiation from pistons,
either as frequency-domain or time-domain expressions [12]. If a square aperture is subdivided into
equally sized square elements, then many Z; ; will be identical.



2.3. [Edge diffraction Method

The edge diffraction method decomposes the sound pressure into a sum of four terms, whether one
uses a time-domain or frequency-domain description,

P(X) = pdirect(x) + pspecula.r(x) + Dadiff. I(X) + Phigher-order diff.(x) (8)

where pgirece 1 the same as the free-field incident field if the receiver can see the source, and zero
otherwise. Thus, behind the baffle, the direct sound will be non-zero in a narrow duct created by the
source and the aperture. The term ppecuiar represents the specular reflection according to geometrical
acoustics principles, and this term will be non-zero only on the source side of the baffle. The first-
order diffraction term, pg 1, is generated by the edge of the aperture and reaches all possible receiver
points, because a first-order diffraction wave is generated by all points of an edge which can see the
source and the receiver, [6], [S]. The last term, phigher-order aif.» 15 generated as waves from the source, to
one point along an edge, via another point along an edge, repeated a number of times, and then to the
receiver. For this special case of an aperture in a rigid, thin wall, the analytic edge source directivity
functions have the amplitude zero for a wave from one edge point to another edge point. Therefore,
second- and higher-order diffraction is zero for this case [4].

As a consequence of the lack of higher-order diffraction for the aperture in the thin wall, in this
study it suffices to compute the first three terms in Equation 8. The first-order diffraction is computed
as a integral along the aperture edge, and the integral involves directional edge sources. For the special
case of a thin edge and normal incidence, the directivity function gets simplified, and the integral takes
the form [6], [5],

1 e—jk(m+l)
Pait. 1(X) = —— fﬁ dsr )
8r Jr ml
where I represents the aperture edge, sr is the position along the edge, m is the distance from the
source point to the edge point, [ is the distance form the edge point to the receiver, and S is the
directivity function, which has the form
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The geometrical parameters are illustrated in Figure 2, which shows that the angles are based on the
aperture edge tangent line, and the source and receiver planes, which involve the edge tangent line,
and the source, or receiver, respectively. For the normal plane wave incidence a further simplication
results, because the angle ¢5 = /2 and then
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The Edge diffraction Matlab toolbox, freely available on Github, [13], computes the terms in
Equation 9, but only for convex scattering objects. A small modification was made of the code so
that the first three terms were computed also for apertures in thin baffles (which are non-convex
geometries, when viewed as scattering objects). The receiver positions were either in the far-field, as
described further below, or in the aperture itself. For the latter, it is not the sound pressure but the
particle velocity which is the desired quantity to compute. The details are not presented here, but a
similar derivation of the gradient of the sound pressure, in the plane of a thin sheet, was presented
in [14]. For these calculations a separate Matlab was implementation was made, using Matlab’s
built-in numerical integration functions.
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Figure 2: Illustration of a part of an aperture edge in a baffle. For each point of the aperture edge,
a tangent line exists. This tangent line forms a "source plane" together with the source position, and
a "receiver plane" together with the receiver position. These planes are used to define the angles
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2.4. Computing the power transmission factor
The power transmission factor can be computed in two different ways, based on the far-field or the
near-field of the transmitted field. In both cases the incident power is the same,

2
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1. A number of receiver positions can be distributed over a hemispherical surface, Apen;, in the far
field, with a radius rg,,. Thus,
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2. The transmitted intensity, lyunsm. = %Re [p - u,], can be computed across the aperture and the
integration of the intensity can give the transmitted power. It can be noted that the sound
pressure is known and equal to the free-field incident sound pressure. Furthermore, for normal
plane wave incidence, the incident sound pressure is constant across the aperture, and then

Wtransm. _ Lapenure Itransm'dA _ %plnMean [Re [ul’l]]
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These two methods should converge to the same value, as the number of discretization points in the
aperture, and the number of receiver points, are increased.

2.5. Richardson extrapolation

An acceleration technique is used here, the so-called Richardson extrapolation. It was explained
for similar numerical methods in [2] but can be described briefly as follows. When a discretization
scheme is used for the numerical computation of some value, i,, the accuracy will depend on some



kind of step size, or element length, A. For many numerical schemes we can, for small A, assume that
the error follows some polynomial dependence on A:

ity = tpge + E1A" + ExA” + O (A7) (12)

where the leading term can be A, or A2, etc, depending on the numerical scheme. As an example let’s
assume that we know that the calculation of i, has an error that goes as O (A), but we don’t know the
value of E; and we don’t know u,, .. We can rewrite Equation 12 as

ity = u, + E;A' (13)

where
U, = Upgue + O (Az) (14)

Then we can compute #, for two different values of A, and Equation 13 gives us two equations and
two unknowns, so we find an improved estimate u,,, the error of which goes as O (AZ) see Equation 14
rather than our directly computed values it,, which have O (A). If one doesn’t know the leading
exponent for the numerical method at hand, it can be found empirically from a set of calculations [2].

For the numerical computations that follow, a number of discretizations were used, followed by
Richardson extrapolation.

2.6. Studied cases

In this study, we include a circular aperture and a square aperture, for perpendicular (normal) plane
wave incidence. For the circular aperture, we subdivide the aperture into N concentric rings, and
calculate the cross-impedance terms, given by Equation 7, for the contribution from one piston shaped
as an annular ring, to a a receiver point at the center of all the annular ring-shaped elements, see Fig.
4(a). The matrix Equation 6 is then solved to give the particle velocities of the N elements/pistons.
Finally, the totally transmitted power is computed as an integral over the intensity in the aperture. The
value of the power transmission factor is finally studied as function of number of elements, N, and
Richardson extrapolation is applied. When the extrapolation gives stable values, it is assumed that
the numerical solution has given an adequately converged value. The particle velocities across the
aperture are also computed with the edge diffraction method, described briefly above.

For the square aperture, the elements are also square, and the cross-impedance terms are computed
as the sound pressure from a square piston in a baffle, for all the receiver points needed, that is, all
the center points of the square elements, see Figure 4(b). The matrix Equation 6 is solved to give
the particle velocity values in the aperture. Once these are known, the transmitted sound pressure
is computed with Equation 3 for a number of farfield receiver positions. The sound pressure at the
far-field receiver positions is also computed with the edge diffraction method, and then the modified
version of ED toolbox is used.

3. RESULTS AND DISCUSSION

3.1. A circular aperture

Figure 4 shows results with the BEM approach and circular elements as shown in Figure 3(a). Figure
4(a) shows the particle velocity amplitude as function of radial position inside the aperture. The
singular behaviour at the edge can be clearly seen. Also shown is the average value of the real part of
the particle velocity amplitude. Apparantly, the particle velocity is dominated by a reactive part for
this low frequency. In Figure 4(b), the power transmission factor, 7, as computed from the average of
the real part of the particle velocity. Results are shown for 8 different numbers of concentric annular
elements, and extrapolated results are shown as well, using the polynomial exponent 1 for the error
model. This low exponent is caused by the integral approach which corresponds to a midpoint method.
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Figure 3: For both (a) the circular, and (b) the square, aperture the cross-impedance term Z; ; gives the
sound pressure at receiver point j, at the center of element j, for a unit vibration velocity of element i.

Finally, the reference result according to Equation 2 is also plotted as a constant value. Numerically,
the reference result is 7,; = 0.8105726 and the best extrapolated result is 7 = 0.8105753, which
has a relative error of 3.3e-6. The best directly computed value is 7 = 0.8083545, which has a
relative error of 1.4e-3. These results seem to confirm that the simple numerical approach can give
adequate accuracy, at least for a circular aperture, and a low frequency. Furthermore, the extrapolation
technique also seems to work efficiently for increased precision.

The transmission coefficient was also computed with first-order diffraction, computing the particle
velocity in the aperture, at the same element midpoints as was done with the BEM approach, and the
results are shown in Figure 5. The results with the diffraction method converge towards the value 0.5,
which is -2.1 dB relative to the reference results, and this error was found also by Summers in [3].
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Figure 4: Results for the circular aperture using the BEM approach, for ka = 0.01. (a) Particle
velocity amplitude in the aperture, computed with 256 concentric elements. Also shown is the mean
value of the real part, which gives the transmitted power. Note the logarithmic amplitude scale. (b)
The transmission coefficient, 7, calculated from Equation 11, for different number of elements. Also
shown are the extrapolated values and the reference solution.

3.2. A square aperture

For the square aperture, the particle velocity in the aperture was computed with the BEM, in the same
way as for the circular aperture, but with elements as illustrated in Figure 3(b). In addition, the far-
field resuls were computed by distributing 1000 receivers over a hemisphere with a radius of 50 m
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Figure 5: Transmission coefficient, 7, for the circular aperture using the diffraction method, for ka =
0.01, based on the same number of discrete points in the aperture as in Figure 5. Also shown are the

extrapolated values and the reference solution. Note the different scale as compared with Figure 4(b).

(the aperture had the size of 1m by 1m), see Figure 6. The far-field results were also computed with
the diffraction method.

Figure 6: Illustration of 1000 receiver positions that are distributed evenly across a hemispherical
surface.

No reference solution is available for the square aperture, but the excellent agreement with the
reference result for the circular aperture gives us confidence in our BEM results also for the square
aperture. Figure 7(a) shows the results for the BEM approach and the diffraction method, for a low
frequency, expressed as kL = 0.01, where L is the sidelength of the square aperture. First, one can
observe that for this low frequency, there are extremely small differences between the near-field and
far-field results computed with the BEM. This is caused by the omnidirectionality of the radiation for
the low frequency studied here. One can also observe that the Richardson extrapolation converges
towards a value of 0.8450. The result with the diffraction method gives a value of 0.6372, which is
1.2 dB lower than the BEM result. The low-frequency error with the diffraction method is apparantly
a bit smaller for a square aperture than it is for the circular aperture. In Figure 7(b), the real part of
the particle velocity in the aperture is shown, for the most accurate BEM calculation, with 50 by 50
elements, plotted with a linear amplitude scale. One can see amplitudes that might be singular towards
the four edges of the square aperture, which offers a numerical challenge for the computations.

The transmitted field is analyzed further, for a number of frequencies. Figure 8 shows the far-field
sound pressure amplitude as function of radiation angle 6 (see Figure 1) for a low and a high
frequency, expressed as kL. The two values of kL correspond to 10 Hz and 316 Hz, respectively, for
an aperture of size Im by 1m. It can be observed that somewhat larger errors result for transmission
angles larger than 80 degrees. In addition, the diffraction method does not give an omnidirectional
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Figure 7: (a) Transmission coeflicient, 7, for the square aperture using the BEM and the diffraction
method, for kL = 0.01. For the BEM the transmitted power is computed both from the intensity in
the aperture, as for the circular aperture ("nearfield") and also from far-field receivers ("farfield").
Also shown are the extrapolated values. The results with the diffraction method are only computed as
far-field values and are thus independent of the BEM-discretization in the aperture. (b) The real part
of the particle velocity in the aperture, for the 50 elements by 50 elements BEM computation.

field for the largest transmission angles.

To analyze the error with the diffraction method as function of frequency, we subdivide the results
into two angle regions, 0-80 degrees, and 80-90 degrees. Thus, Figure 9 presents the means and
percentile values for those two receiver groups, as function of frequency, again expressed as kL. The
BEM results are based on calculations with the number of elements being up to 140 by 140 = 19600,
which implies that an inversion of a 19600 by 19600 matrix is required for solving Equation 6.
Richardson extrapolation was used for all 1000 receiver position sound pressures. It can be observed
that for transmission angles smaller than 80 degrees, the mean error is smaller than +0.5 dB when
kL > 1.3, which corresponds to 71 Hz for a Im by 1m aperture. For transmission angles between 80
and 90 degrees, the mean error is smaller than £0.5 dB when kL > 2.8, which corresponds to 160
Hz for a Im by 1m aperture. The percentile values show that for transmission angles smaller than 80
degrees, 95% of the receiver points have an error within [-1 dB, +0.5 dB] for kL > 0.75, that is, for
frequencies above 41 Hz for a 1m by 1m aperture. For transmission angles larger than 80 degrees,
the range of errors is substantially larger, and 95% of the receiver points have an error within [-2.5
dB, +1.5 dB] across the entire frequency range. It should be noticed, however, that for very large
transmission angles and high frequencies, the transmitted sound is very weak. An indication of this
can be seen in Fig. 8(b), where the transmitted sound at 85-90 degrees is around 15 dB weaker
than for the main direction of 0 degrees. Therefore, the larger errors (for high frequencies and large
transmission angles) have very little influence on the totally transmitted sound field.

Future work should include the study of rectangular apertures, and possibly also other shapes.
Furthermore, apertures in thick walls should be addressed.

4. CONCLUSIONS

The sound transmission through a circular and square aperture in a thin wall has been studied using
a boundary element method to give reference result, and the edge diffraction method. It was found
that the low-frequency asympotic value of the power transmission coefficient is underestimated by
2.1 dB with the edge diffraction method for the circular aperture, which confirms earlier findings by
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Figure 8: The transmitted sound pressure level (SPL) relative to the incident SPL for a square aperture
and (a) a low frequency where the transmitted sound is omnidirectional, and (b) a higher frequency
where the transmitted sound is no longer omnidirectional.
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Figure 9: Error for the transmitted SPL, defined as SPL with diffraction method minus SPL with

BEM. The mean and percentile values are based on 272 receivers (0-80 degrees) and 728 receivers
(80-90 degrees), respectively.

Summers, [3], and by 1.2 dB for the square aperture. For the square aperture, the edge diffraction
method gives far-field sound pressure values that for 95% of all receiver points are within [-1 dB,+0.5
dB] of the reference result, for transmission angles smaller than 80 degrees, as long as kL > 0.75 (that
is, that one side of the aperture is larger than 1/8th of the wavelength). For transmission angles larger

than 80 degrees, 95% of the far-field sound pressure values are predicted within [-2.5 dB,+1.5 dB]
with the diffraction method.

REFERENCES

[1] Andreas Asheim and U. Peter Svensson. An integral equation formulation for the diffraction

from convex plates and polyhedra. The Journal of the Acoustical Society of America,
133(6):3681-3691, 2013.

[2] Sara R. Martin, U. Peter Svensson, Jan Slechta, and Julius O. Smith. Modeling sound scattering
using a combination of the edge source integral equation and the boundary element method. The
Journal of the Acoustical Society of America, 144(1):131-141, 2018.

[3] Jason Summers. Inaccuracy in the treatment of multiple-order diffraction by secondary-edge-
source methods (1). The Journal of the Acoustical Society of America, 133(6):3673-3676, 2013.



[4] Sara R. Martin and U. Peter Svensson. Double diffraction models: a study for the case of non-
convex bodies. Krakow, Poland, 7-12 Sept. 2014.

[5] U. Peter Svensson, Paul T. Calamia, and Shinsuke Nakanishi. Frequency-domain edge
diffraction for finite and infinite edges. Acta Acustica united with Acustica, 95:568-572, 2009.

[6] U. Peter Svensson, Roger I. Fred, and John Vanderkooy. An analytic secondary source model
of edge diffraction impulse responses. The Journal of the Acoustical Society of America,
106(5):2331-2344, 1999.

[7] U. Peter Svensson, Andreas Asheim, and Sara R. Martin. Sound propagation through an aperture
with edge diffraction modeling (abstracts). The Journal of the Acoustical Society of America,
141(5):3784, 2017.

[8] C.J. Bouwkamp. Diffraction theory. Reports on progress in physics, 17(1):35-100, 1954.

[9] J. Van Bladel. Low frequency scattering through an aperture in a rigid screen. Journal of Sound
and Vibration, 6(3):386-395, 1967.

[10] W. E. Williams. Scattering through apertures in screens. Journal of Sound and Vibration,
13(1):37-42, 1970.

[11] R. de Smedt. Low frequency scattering through an aperture in a rigid screen - some numerical
results. Journal of Sound and Vibration, 75(3):371-386, 1981.

[12] Gerald R. Harris. Review of transient field theory for a baffled planar piston. The Journal of the
Acoustical Society of America, 70(1):10-20, 1981.

[13] U. Peter Svensson. Edge diffraction matlab toolbox.

[14] David P. Hewett and U. Peter Svensson. The diffracted field and its gradient near the edge of a
thin screen (1). The Journal of the Acoustical Society of America, 134(6):4303—-4306, 2013.



	Introduction
	Theory and methods
	Bouwkamp's low-frequency expressions, and an integral equation formulation 
	Numerical solution of Equation 4 - a Boundary Element Method
	Edge diffraction Method
	Computing the power transmission factor
	Richardson extrapolation
	Studied cases

	Results and discussion
	A circular aperture
	A square aperture

	CONCLUSIONS

