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1 INTRODUCTION  
Localised elastic waves in solids bounded by surfaces of complex geometry are often present in 
nature, for example as seismic waves resulting from earthquakes and propagating along mountain 
ridges. They also appear in a variety of engineering applications, where they can be associated with 
specific vibration modes of different plate-like structures, etc. In the present paper, it is 
demonstrated that the existence of localised modes of Rayleigh waves on solid surfaces of complex 
topography or guided quasi-flexural plate waves in different plate-like structures can be understood 
using the classical definition of open acoustic waveguides utilizing the condition of total internal 
reflection of Rayleigh or plate waves from the areas surrounding the 'internal' area of wave 
localisation. It should be noted that the possibility of total internal reflection in structures of complex 
geometry is often linked to the presence of internal areas on the surfaces characterised by the 
geometry-dependent local phase velocities of Rayleigh or plate waves that are smaller in the 
direction of guided wave propagation than their values in the surrounding areas. This is similar to 
the well-known case of guided wave propagation in atmospheric or underwater Acoustics.  
 
The above-mentioned condition of wave localisation is illustrated in this paper by theoretical 
calculations of frequency-dependent phase velocities of guided modes for three different cases of 
localised elastic wave propagation. These are localised Rayleigh waves propagating along solid 
cylinders of variable curvature, localised flexural waves in slender elastic wedges (also known as 
wedge elastic waves), and localised quasi-flexural waves in non-circular cylindrical shells. The 
results for dispersion curves of localised waves are compared with the known solutions, where 
available.  
 
 
2 TOPOGRAPHIC WAVEGUIDES FOR RAYLEIGH WAVES  
 
2.1 General Comments  
 
To understand the physical nature of Rayleigh wave localisation on surfaces of variable curvature it 
is instructive to apply Geometrical acoustics approximation (GA) to Rayleigh wave propagation on 
such surfaces. Note that GA is used widely in underwater acoustics or for solving problems of 
sound propagation in inhomogeneous atmosphere1. However, in the acoustics of solids its use is 
not so frequent, which can be partly explained by the complexity of real inhomogeneous solid 
structures, such as bodies with curved surfaces, plates of variable thickness, noncircular shells of 
arbitrary shape, etc. In the same time, the use of GA to describe wave propagation in such 
inhomogeneous solids is very efficient, and in many cases it can serve as a key to understanding of 
the physical nature of wave propagation in such solids and structures2.  
 
Geometrical acoustics approximation is an asymptotic high-frequency solution (sometimes called 
ray-tracing solution) to the differential equations with boundary conditions describing wave 
propagation in any particular medium or structure. In this section, a brief overview of the 
developments of the geometrical acoustics theory for Rayleigh waves in solids of complex 
topography is given, based mainly on the original results of the present author. Initially, the 
propagation of Rayleigh waves along arbitrary curved surfaces is considered. The obtained results 
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are then applied to the description of localised modes in the so-called smooth topographic 
waveguides for surface waves.  
 
2.2 Propagation of Rayleigh Waves on Curved Surfaces  
 
It is well known that if a Rayleigh wave propagates along a curved surface its velocity changes due 
to the effect of curvature2. Generally, curved surfaces represent anisotropic and inhomogeneous 
media for propagating Rayleigh waves. As it is obvious from general geometry, only a spherical 
surface is both isotropic and homogeneous. A circular cylindrical surface is anisotropic, but 
homogeneous, and a non-circular cylindrical surface is both anisotropic and inhomogeneous (in the 
direction perpendicular to the cylindrical axis). Thus, if the surface of a solid body is curved, then 
there are two main features associated with propagation of high-frequency Rayleigh waves: these 
are the anisotropy of the local wave velocity and the inhomogenity of the medium due to a variable 
surface curvature.  
 
The starting point for the geometrical acoustics approximation for Rayleigh waves on curved 
surfaces of arbitrary form is the high-frequency asymptotic expression for the local Rayleigh wave 
velocity as a function of two local radii of surface curvature2-4:  
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Here  c0  is the Rayleigh wave velocity on a flat surface,  k0 = ω/c0  is the corresponding 
wavenumber,  ρu  and  ρv  are the radii of the surface curvature in the direction of wave propagation 
and in the direction perpendicular to it respectively,  au  and  av  are the non-dimensional coefficients 
that depend on Poisson’s ratio of the medium. Note that expression (1) has been established by 
several researchers, including the present author (see Ref 2 for details). The values of  au  and  av  
for all values of Poisson’s ratio can be found in Ref 2. The important fact to be mentioned here is 
that  au  is always positive, whereas  av  is always negative. The latter feature is paramount for 
Rayleigh wave localisation, and, as will be discussed in the next section, it is responsible for the 
existence of smooth topographic waveguides for Rayleigh waves.  
 
If the two radii of curvature  ρu  and  ρv  are known as functions of surface coordinates, the usual 
formalism of geometrical acoustics (in scalar approximation) can be applied to describe either 
vertical or horizontal component of a propagating Rayleigh wave in the arbitrary point of the curved 
surface. In order to do so, one should initially establish the trajectories of all possible rays that can 
be traced from a chosen point of Rayleigh wave excitation. After the ray trajectories have been 
established, the solution for a wave propagating along any particular trajectory, using a surface 
coordinate  s  measured along the trajectory, can be written in the form1, 2 

 
∫= dsskiesAu )()( ,                                                         (2) 

 
where  A(s)  and  k(s) = ω/c  are slowly varying functions of  s  describing the amplitude and the 
local wavenumber of the Rayleigh wave.  
 
To calculate ray trajectories of Rayleigh waves propagating over surfaces of variable curvature it is 
convenient to use the Hamiltonian approach2, 3. For example, in the case of a smooth noncircular 
cylinder shown in Figure 1, the calculated ray trajectories3 of Rayleigh waves propagating from the 
point of excitation located in the area of maximum curvature are shown in Figure 2. It can be seen 
that Rayleigh waves incident at the angles larger than 82 degrees experience total internal 
reflection and thus become captured within the area of maximum curvature corresponding to the 
minimum of phase velocity in the x-direction. This constitutes a waveguide effect of such 
inhomogeneous surfaces.  
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Figure 1. Geometry of a noncircular cylinder.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Ray trajectories of Rayleigh waves propagating at arbitrary angles in 
respect of the axis of a noncircular cylinder3.  

 
 
2.3 Smooth Topographic Waveguides for Rayleigh Waves  
 
As was shown above, non-circular cylindrical surfaces can support guided Rayleigh waves. If the 
waveguiding properties are attributed to the influence of surface geometry, as in the case 
considered, then the associated waveguides are often called 'topographic waveguides'. The need to 
take into account guiding properties of surfaces of complex geometry appears in seismology and in 
different applications of ultrasonic non-destructive testing. For example, in condition monitoring 
using acoustic emission, it is often necessary to be able to predict the most likely directions of 
propagation for Rayleigh waves radiated by a developing crack. Since the likely locations of 
emerging cracks can be anticipated, it is important to be able to predict possible paths of guided 
waves propagation, where placement of acoustic emission sensors would be most efficient.  
 
A rigorous analysis of topographic waveguides is rather difficult. As a rule, it cannot be done 
analytically and requires numerical approaches. However, there are several important cases that 
can be considered using approximate analytical approaches. Among these cases are smooth 
topographic waveguides (see Figure 3), for which the minimum radius of surface curvature is 
greater than the Rayleigh wavelength. Such waveguides can be considered in geometrical 
acoustics approximation on the basis of the asymptotic expression (1) for the local velocity of 
Rayleigh waves.  
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The first geometrical acoustics consideration of smooth topographic waveguides and the first 
physical interpretation of the Rayleigh wave localisation in these and similar topographic structures 
have been given by the present author4 (see also the monograph2, where a special chapter is 
devoted to Rayleigh waves on curved surfaces of arbitrary form (Chapter 9), and another chapter 
(Chapter 10) describes waves in topographic waveguides, including smooth topographic 
waveguides (see Section 10.5)). The geometrical acoustics theory of smooth topographic 
waveguides provides a clear and physically explicit explanation of the reason for the presence of 
waveguide effect in such structures. Namely, it demonstrates that the existence of propagating 
localised modes of Rayleigh waves in smooth topographic waveguides can be explained by the 
presence of an 'internal' area on the surface with the curvature-dependent local phase velocity of 
Rayleigh waves that is smaller in the direction of guided wave propagation than its values for 
adjacent flat surfaces (with zero curvature). The sequence of this is the possibility of total internal 
reflection of the curvature-modified Rayleigh waves from the surrounding areas of zero or negative 
surface curvature2, 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Ridge and groove types of smooth topographic waveguides4.  
 
 
For illustration purposes, let us consider a brief derivation of the dispersion equation for symmetric 
guided modes of the smooth topographic ridge-type structure shown in Figure 3(a). This structure is 
formed by a part of a circular cylinder of radius  R  and by two flat surfaces positioned at the angle 
ε. Applying formula (1) to a Rayleigh wave propagating along a circular cylindrical surface at an 
angle  Φ  in respect of the element of cylinder and using Euler's formulas for the radii of curvature  
ρu  and  ρv  in the case of circular cylinder of radius R, one can obtain the following expression for 
Rayleigh wave velocity on the curved part of the structure2:  
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The dependence of the velocity  c  on the angle  Φ  in (3) describes the anisotropy of Rayleigh wave 
velocity on circular cylindrical surfaces, even if the material is isotropic. We remind the reader that 
formula (3) is valid for  k0R >> 1.  
 
The described smooth ridge-type structure with the surface of variable curvature can be considered 
as a three-layered plane medium in respect of Rayleigh wave propagation, where the internal 
(curved) area is characterised by the Rayleigh wave velocity  c  described by formula (3) and the 
two side (flat) areas are characterised by Rayleigh wave velocity on the flat surface  c0. Therefore, 
in order to analyse guided surface wave propagation along a solid cylinder of variable radius, one 
can apply the standard dispersion equation for a three-layered scalar medium, in which one should 
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take into account the anisotropy of Rayleigh wave velocity  c  in the internal area. For example, for 
the m-th symmetric guided mode this equation has the form2:  
 

[ ]
2/1

22

2
0

2
12/122

)(
tan

2
)(

2 










−Φ

−
+=−Φ −

γ
γπγ

c
c

k
kmka

,                                       (4) 

 
where  γ = kc cosΦ  is the constant (wavenumber) describing wave propagation in a waveguide,  a 
=(π - ε)R  is thickness of the internal layer (see Figure 3(a)), and  kc(Φ) = ω/c(Φ)  is the 
wavenumber of a Rayleigh wave on the curved surface, where Rayleigh wave velocity c(Φ) is 
defined by formula (3). Combining the expressions (3) and (4) and resolving them in respect of  γ,  
one can obtain, after some simple rearrangements, that the expression for  γ  for the lowest order 
mode takes the form:   
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where  β1 = -2av.  As expected, the expression (5) describes the waveguide propagation of 
Rayleigh waves at the velocity that is slightly lower than the velocity of Rayleigh waves on a flat 
surface  c0. The expression (5) coincides in form with the first terms of the expansion for  γ  earlier 
obtained by a direct method of solving the corresponding boundary problem5 (see also other 
references in the monograph2). However, it is important to emphasise that the geometrical acoustics 
approach described in this section is physically explicit and incomparably simpler. The amplitude 
distributions of guided modes in the lateral direction can be easily constructed using the expression 
(5) (the details are not shown here for brevity). It is useful to mention though that the wave 
amplitudes decay exponentially away from the curved area.  
 
In light of the above, it is interesting to note that research papers continue to appear in which the 
authors attempt to give other physical interpretations of the waveguide effect of surface topography, 
which are different from the above-mentioned one based on geometrical acoustics. For example, in 
the paper6, the authors consider asymptotically and numerically Rayleigh wave propagation in a 
topographic waveguide formed by a smooth ridge-type elevation over a flat surface. Although the 
factual results obtained by the authors seem to be correct, their physical interpretation of the 
Rayleigh wave localisation phenomenon does not look convincing. In contrast to that, the approach 
based on geometrical acoustics approximation described in this section provides a clear physical 
explanation of the guiding properties of surface topography for all structures of this type and gives 
numerical results for phase velocities of guided surface modes that are in good agreement with 
numerical calculations and with experiments.  
 
 
3 LOCALISED FLEXURAL WAVES IN SLENDER WEDGES  
 
In addition to Rayleigh waves on curved surfaces considered in the previous section, very important 
are also Lamb waves propagating in plates of variable thickness. The most important modes of 
Lamb waves are lowest order antisymmetric and symmetric modes. In noise and vibration 
engineering, these modes are usually called flexural and compression waves respectively. In what 
follows, a particular type of plates of variable thickness will be discussed – plates with local 
thickness variable in the lateral direction and reducing to zero at the plate edge. Especially 
interesting is the case of linear reduction of a plate local thickness with the distance, i.e. the case of 
slender elastic wedges of linear profile (Figure 4). To develop a geometrical acoustics theory of 
flexural or compression wave propagation in slender wedges one can start from the corresponding 
reduced equations for flexural and compression waves respectively and seek the solutions of these 
equations in the form similar to equation (2). It can be shown that equation (2), containing local 
wavenumbers of flexural and compression waves respectively, satisfies both these equations 
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asymptotically at relatively high frequencies7, 8. In practice though this often means that frequencies 
are well within the range of practically used frequencies.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Geometry of a slender elastic wedge.  
 
 
3.1  Geometrical Acoustics Theory of Wedge Elastic Waves  
 
One of the important applications of geometrical acoustics to antisymmetric Lamb modes is the 
development of the analytical theory of localised elastic waves propagating along the tips of slender 
elastic wedges. Such localised waves are also known as 'wedge elastic waves' or 'wedge acoustic 
waves'. Their existence has been first predicted using numerical calculations9,10 The geometrical 
acoustics theory of wedge elastic waves has been first developed by the present author7, 8 (see also 
the monograph2). For the case of wedges of linear profile, this theory is based on the geometrical 
acoustics approach to flexural wave propagation in a slender wedge considered as a plate with a 
local variable thickness  d = xΘ,  where  Θ  is the wedge apex angle and  x  is the distance from the 
wedge tip measured in the middle plane (see Figure 4). These wedges can be considered as 
continuously varying media for propagation of flexural waves because the velocity of the latter 
depends on the local wedge thickness proportionally to the square root from  d.  
 
In the framework of the geometrical acoustics approach, the velocities  c  of the localised flexural 
modes propagating in  y  direction can be determined as the solutions of the Bohr - Sommerfeld 
type equation2, 7, 8:  
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where  β = ω/c  is yet unknown wavenumber of a propagating wedge mode,  k(x)  is a local 
wavenumber of a flexural wave in a plate of variable thickness,  n = 1,2 3, ... is the mode number, 
and  xt  is the so called ray turning point (the point of total internal reflection) that can be determined 
from the equation  k2(x) - β2 = 0.  For example, in the case of a wedge in vacuum  k(x) =121/4 
kp

1/2(Θx)-1/2,   xt=2√3kp/Θβ2,  and  kp = ω/cp,  where  ω   is circular frequency,  cp= 2ct(1-ct
2/cl

2)1/2  is 
the so called plate wave velocity,  cl  and  ct  are propagation velocities of longitudinal and shear 
acoustic waves in a plate material. Performing the integration in (6), which in this case can be done 
analytically, and solving the resulting algebraic equation yields the extremely simple analytical 
expression for velocities of different modes of wedge elastic waves7, 8:  
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It can be seen from (7) that all wedge modes are non-dispersive, which was expected for a wedge 
of linear profile described by a singe non-dimensional parameter, angle  Θ. Note that the expression 
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(7) agrees well with the earlier developed numerically based theories9, 10 and with the available 
experimental results. The analytical expressions for amplitude distributions of localised wedge 
modes are rather cumbersome7 and are not displayed here. Figure 5 illustrates the first three 
modes calculated in the geometrical acoustics approximation7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. First three modes of wedge acoustic waves calculated using geometrical 
acoustics approximation7.  

 
 
The structure of the localised wedge modes shown in Figure 5 agrees well with the results of the 
known numerical calculations, with the exception of the clearly seen singularities in the areas 
marked by dashed vertical lines. Beyond these lines, which show the positions of caustics (ray 
congestion zones), the modes do not penetrate into the depth of a wedge. The above singularities 
manifest the well-known limitation of all geometrical acoustics (optics) theories that become invalid 
near caustics1, 2. The above-mentioned geometrical acoustics theory of wedge acoustic waves can 
be generalised to consider localised modes of quadratically-shaped elastic wedges11, wedges 
immersed in liquids12, cylindrical and conical wedge-like structures (curved wedges)13, wedges of 
general power-law shape14, truncated wedges7, and wedges made of anisotropic materials15, 16.  
 
 
4 LOCALISED WAVES IN NONCIRCULAR SHELLS  
 
Non-circular cylindrical shells are relatively simple configurations (see Figure 6) that are used widely 
as elements of different complex structures, especially in aeronautical, automotive and oceanic 
engineering. They are also used frequently for modelling structural vibrations and structure-borne 
interior noise in all means of transportation17. Note that obtaining analytical solutions for vibrations 
of non-circular cylindrical shells is extremely difficult since it requires solving a system of governing 
differential equations with variable coefficients that describe the effects of variable curvature.  
 
The geometrical acoustics approach to the description of waveguiding properties of shells and 
calculation of their resonant vibrations simplifies the problem substantially18. As in the case of 
Rayleigh waves and flexural waves in elastic wedges, the physical reason for waveguide 
propagation along quasi-flat areas of non-circular cylindrical shells is the difference between quasi-
flexural wave velocities in their quasi-flat and curved parts. In particular, for waveguide propagation 
to become possible it is necessary that the velocity of quasi-flexural waves in the adjacent curved 
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areas is higher than in the quasi-flat internal area. This is always the case for quasi-flexural wave 
propagation in the near-axial directions of curved shells19.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Waveguide propagation in a non-circular cylindrical shell.  
 
 
4.1 Geometrical Acoustics Theory of Localised Waves in Shells  
 
It is convenient to consider waveguide propagation of flexural waves in a simple non-circular elastic 
shell comprising an infinitely long flat plate (strip) of thickness  h  and width  a  bounded by 
fragments of two cylindrical shells having equal radii  R  (Figure 6). Like in the similar case for 
Rayleigh waves, such a structure can be considered as a three-layered anisotropic medium for 
flexural waves18. The middle layer (a flat isotropic strip) is characterised by a lower phase velocity of 
flexural waves in comparison with the velocities of quasi-flexural waves in the near-axial direction in 
the adjacent cylindrical shells. Waveguide propagation in such a three-layered medium can be 
described in the same way as Rayleigh waves in topographic waveguides considered in Section 2.  
 
The general dispersion equation in this case can be written in the form similar to equation (4), 
keeping in mind that in this case the internal area of the waveguide represents a flat plate18:  
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Here  γ  is a yet unknown wavenumber of a guided flexural wave propagating in the above-
mentioned three-layered system,  kpl = (ω2ρsh/D)1/4  is the wavenumber of flexural waves in a flat 
plate, where  ρs  is the mass density of the plate material and  D  is plate flexural rigidity,  ksh(ϕ)  is 
the angular-dependent wavenumber of flexural waves in a circular cylindrical shell, where  ϕ  is the 
wave propagation angle, and  m = 0,1,2,3…is the mode number. Note that  γ = kpl cosϕ.  
 
Let us consider waveguide propagation at frequencies lower than the ring frequency. In this case 
the expressions for  ksh(ϕ)  are generally too complex to be described analytically. It is well known19 
that quasi-flexural waves in shells, being in fact curvature-modified Lamb modes, are governed by 
bending and membrane effects, which influence the expressions for quasi-flexural wave velocities 
that are anisotropic. Their functional appearance depends on the characteristic parameters of the 
shell, in particular on its ring frequency  ωr  and on its mean radius of curvature  R.  
 
In what follows we limit ourselves with the case of small wave propagation angles  ϕ,  for which  
ksh(ϕ)  is known to be extremely small. To simplify things even further, we assume that  ksh(ϕ) = 0  
for all  ϕ  in the range of interest. In this case, the dispersion equation (8) can be rewritten as  
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which results in the simple approximate solution for  γ :  
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It follows from this solution that the velocities of guided modes are higher than the velocity of 
flexural waves in a flat plate forming the internal area, but lower than the velocities of quasi-flexural 
waves in the adjacent fragments of circular shells. It can be also shown that the waveguide effect in 
this case is rather strong, and the energy of a guided wave is almost entirely concentrated in the 
internal flat plate area18.  
 
4.2 Resonant Frequencies of Vibration of Finite Shells  
 
The expression (10) for the wavenumbers of guided flexural waves in non-circular cylindrical shells 
can be used for calculations of resonant frequencies and mode shapes of resonant vibrations of 
finite non-circular shells18. To do so one should consider a finite length  L  of the above-mentioned 
noncircular shell (see Figure 6) and assume for simplicity that at  z = 0  and at  z = L  the system is 
subject to simply supported boundary conditions. Then the distribution of the resulting elastic field 
along z-axis formed by incident and reflected guided waves can be expressed in the form  sin(γz).  
Using the condition  sin(γL) = 0,  one can obtain that  γL = πn,  where  n = 1,2,3… Using this equality 
together with formula (10) for γ, one can obtain the following expression for resonant frequencies of 
a finite shell in the case of frequencies that are lower than the ring frequency:  
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One should keep in mind that expression (11) is valid for  n >> m,  which corresponds to low values 
of the propagation angle  ϕ  considered in the above-mentioned approximate solution. The values of 
resonant frequencies defined by the expression (11) are in good agreement with the numerical 
calculations and with the experimental measurements18. It is remarkable that formula (11) coincides 
with the well-known expression for resonant frequencies of simply supported flat plates having the 
dimensions  L  and  a  (note that in the present paper we assume that  m = 0,1,2,3…, whereas in 
the plate theory usually  m = 1,2,3…). This coincidence reflects the fact that at frequencies lower 
than the ring frequency the waveguide effect provided by two circular shells attached to a flat plate 
at opposite edges is very strong and almost the whole vibration energy is concentrated in the flat 
plate area.  
 
 
5 CONCLUSIONS  
 
In the present paper, localised elastic waves in three different types of solid structures have been 
considered theoretically. These are localised Rayleigh waves propagating along solid cylinders of 
variable surface curvature, localised flexural waves in slender elastic wedges (also known as wedge 
elastic waves), and localised quasi-flexural waves in non-circular cylindrical shells. For all these 
cases, derivations of the expressions for dispersion curves of localised waves have been discussed 
and the results compared with the known solutions, where available.  
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It has been demonstrated that in all cases under consideration the possibility of wave localisation 
can be explained by the existence of total internal reflection in structures of complex geometry due 
to the presence of internal areas of the surfaces characterised by the geometry-modified local 
phase velocities of Rayleigh or plate waves that are smaller in the direction of guided wave 
propagation than their values in the surrounding areas. This is similar to the condition of guided 
wave propagation in open waveguides considered in atmospheric or underwater Acoustics.  
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