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1 INTRODUCTION 

This paper considers active vibration reduction on a simply supported beam excited by a 
disturbance. Though MIMO controllers of various types can be used to control these vibrations, this 
research focuses on the use of SISO-systems to attenuate the vibrations. Several SISO strategies 
for the control of a beam already exist. For single frequency disturbances tuneable vibration 
neutralisers and wave absorption strategies can be particularly effective as demonstrated by 
Brennan and Dayou1 and Brennan, Elliott and Pinnington2. For broadband disturbances the most 
widely used method of control is absolute velocity feedback, which was used by Rockwell and 
Lawther3 in one of the first applications of active vibration control. The feedback gain can be tuned 
to an optimal value. Levine and Athans4 described an algorithm that lets the velocity feedback gain 
converge to a point where the derivative of the cost function with respect to the gain is zero, a 
necessary condition for optimality. Geromel and Bernussou5 modified this algorithm to calculate the 
separate optimal gains for decentralised controllers. 
 
The purpose of this paper is to examine the relationship between local properties of the beam and 
the optimal velocity feedback gain that minimises the kinetic energy in the beam. These local 
properties are assumed to be the poles of the system and the way the actuator and sensor couple 
into the modes. 
 
To achieve this several steps will be taken. First, the optimal velocity feedback gain is examined 
when the beam is excited by a single disturbance or primary force. It will be shown that, as the 
primary force location changes, the optimal velocity feedback gain also varies. This means some 
assumption has to be made with respect to the primary force, to be able to establish a relationship 
between the optimal value of the velocity feedback gain and the variables measured at that location. 
The assumption that is then made is that the primary excitation is a random distributed excitation. 
The Levine and Athans algorithm is used to find the optimal velocity feedback gain. The feedback 
gain is then examined as the secondary (control) force location is varied. The results for the optimal 
feedback gain are then compared to the optimal solution for a much simpler model. Finally the 
solutions are compared in a 2x2 MIMO setup. 

2 POINT FORCE EXCITATION  

The control of the beam is first examined when it is 
subject to a disturbance from a point force. The 
assumed locations of the primary and secondary force 
are depicted in figure 1. The velocity sensor is 
collocated with the secondary force. Both the sensor 
and the actuator are assumed to be ideal. A model of 
a simply supported Euler-Bernoulli beam is used, 
subject to a slight viscous modal damping. The 
number of modes that has been taken into account 
(N) is 30. Assumptions with respect to flexural rigidity 
(EI), density (m), length (L) and the amount of 
damping (

�
) are shown in table 1. 
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Figure 1: Location of primary and 
secondary force. 
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2.1 Frequency-domain method 

The total kinetic energy of the beam is equal to the integral of the kinetic 
energy along the beam: 
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The velocity at each point can be written as a sum of the modal velocities: 
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In this equation � n(x) denotes the mode shape of mode n and vn(x) the velocity of that mode. For 
the simply supported beam the modes are sinusoidal and orthogonal. This means the kinetic energy 
of the beam is also equal to a sum of the kinetic energy in each of the modes6: 
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In the frequency domain, this results in: 
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where Vn(� ) is the modal velocity of mode n for excitation at that particular frequency. Parseval’s 
theorem guarantees that the integral over the time domain, from minus infinity to infinity is equal to 
the integral over the frequency domain from minus infinity to infinity. This integral can be 
approximated with a Riemann sum of the values of Jke � (� ) over a finite frequency range: 
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It is assumed that the primary excitation force is 
unit variance white noise. The change in total 
kinetic energy of the beam is shown in figure 2 for 
varying velocity feedback gains. The optimal value 
for the feedback gain is clear. However, calculating 
the response at each frequency for each gain is a 
computational intensive method of finding the 
optimum. 
 
Figure 3 shows the kinetic energy at each 
frequency when this optimal value of velocity 
feedback gain is used. The velocity feedback 
mainly reduces the kinetic energy at the lower 
frequencies and at resonances. It does not reduce 
the kinetic energy at all resonances, because the 
feedback loop has no control over the modes that 
have a node at the location of the secondary force; 
when these modes are at resonance, no significant reduction is possible. 

EI 1 [Nm2] 

m 1 [kg/m] 

L 1 [m] �
 0.01 [-] 

Table 1: properties of 
the beam. 
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Figure 2: Variation of the total kinetic energy 
of the beam with velocity feedback gain 
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2.2 Varying secondary force location 

When the location of the secondary force and sensor is varied along the beam, the optimal 
feedback gain changes. This is depicted in figure 4. When primary and secondary force are 
collocated, the feedback gain tends to infinity, since the secondary force can suppress all vibration 
by pinning this point. It is clear that the location of the primary force matters for the selection of an 
optimal feedback gain. In other words, there is not a single optimal velocity feedback gain that can 
be derived from the variables of the beam at the control location. This means some assumption has 
to be made with respect to the excitation to obtain a unique optimal feedback gain. 

3 DISTRIBUTED EXCITATION 

The assumption that the primary force is located at 
a specific location, results in a situation where 
certain modes are excited more strongly than 
others. Also the phase of the movement of the 
separate modes is defined by the control location. 
One way to average out these effects is to assume 
that the beam is excited by a randomly distributed force, as depicted in figure 5. It also assumed 
that the distributed force also varies randomly in time. This type of excitation is also known as rain 
on the roof excitation. In this section the consequences of assuming this type of control are 
examined. 
 
3.1 Spatially uncorrelated forces 

Suppose a spatially random, distributed force excites the beam model. The distributed force has to 
be weighed and integrated to calculated the total force on the nth mode: 
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where p(x,t) denotes a process that is random and uncorrelated in both space (x) and time (t). The 
correlation between the effective forces on different modes can be calculated with: 

Figure 5: Spatially random distributed force. 
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Figure 3: Kinetic energy with and without 
velocity feedback control. 
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Because p(x,t) is uncorrelated in both x and t, E[p(x,t) p(x,t)] is only non-zero when x1 = x2, where it 
is equal to its expected norm. As this norm will only scale the problem it can be chosen freely. 
Furthermore: 
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Thus if the norm of the excitation is chosen equal to 2/L2, the expected norm of the total force on 
each mode ( E[fn(t) fn(t)] ) is equal to 1. 
 
3.2 Optimisation using time-domain analysis 

Levine and Athans4 described the use of a time-domain analysis for the solution of a linear 
quadratic optimisation with a constant control matrix. The analysis is based on the response to an 
initial state of the system. In this analysis a state space description of the system is used: 
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Where x(t) is the state vector of the system and u(t) the control vector. F is the gain matrix that will 
be optimised. x(t) is assumed to be ordered as: 
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where w(t) are the modal displacements, and v(t) the modal velocities. The cost function that was 
used is as follows: 
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Note that this cost function includes costs for both the state (through the matrix Q) and the input 
(through R). The matrix Q has to reflect the kinetic energy in modes. In this case: 
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Levine and Athans use the fundamental transition matrix (8 (t,0)) to write the cost function as a 
function of the initial state: 
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This can also be written as: 
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The transient-matrix [xT(0)x(0)] of the system is chosen to match the model of random distributed 
excitation and will be noted as P. The excitation is assumed to be steady state white noise. This 
results in a flat spectrum in the frequency domain. If a flat spectrum is transformed to the time-
domain, it can also match an impulse function. It has already been established that the modes are 
excited independently. The response of each mode at time t = 0 to a unit impulse function is simply 
a velocity of 1/mL. Because the modes are all excited in an uncorrelated fashion, the off-diagonal 
elements of P must be equal to 0. Combining these results, it can be shown that the matrix P must 
have the following form to match the assumed excitation: 
 G
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Where I is an identity matrix of size N. This is slightly different from what was proposed by Levine 
and Athans, but does not change the algorithm in any major way. For the solution F to be optimal, it 
is necessary that: 
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where K is a positive semidefinite solution of: 
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and L a positive definite solution of: 
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Where A* = A – BFC. The iterative algorithm used by Levine and Athans to calculated F consists 
of three parts: 

1) Choose a stabilising controller F0 and a sufficiently small convergence factor M . 
2) Set:  
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and solve: 
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3) Termination condition: |Fn-Fn-1| < N , where N  is a minimum required change in Fn. If the 

update is smaller than this factor, the algorithm stops. 
 

Convergence of this algorithm (without the termination condition) is guaranteed, as longs as all 
solutions Fn stabilise the system and 0 < M  O  1, as was shown by Toivonen7. The disadvantage of 
using this system is that a weight, R, has to be assigned to the control effort. This means that the 
algorithm will not minimise the kinetic energy as such, but that it can approach the optimal value if R 
is chosen very small. One advantage of this algorithm is that the actual cost and the kinetic energy 
can be calculated fairly easily:  
 

)( ntraceJ PK=  

 
where Kn is solved from the aforementioned Lyapunov equation. J does include however, both 
costs, those associated with the kinetic energy and those with the input. If instead of Kn a matrix M 
is used, that is the positive semidefinite solution of: 
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then only the kinetic energy is calculated. This way of calculating the kinetic energy in a system is 
much less time consuming and more accurate than the frequency domain method. However, it is 
subject to the inaccuracies and limitations of the solution of the Lyapunov equation. 
 
3.3 Results 

When R is chosen to be small, optimality is approached by the iterative algorithm if the update 
parameter M  is also small enough. It has also been found that the calculation is quicker than the 
frequency domain analysis, described in section 2.1, while giving similar results. 
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Figure 6: The convergence of the feedback gain to its optimal value (a) and the change in cost 
function (b) as the gain converges. Secondary force location Lxs 6.0= . 
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4 EFFECT OF CONTROLLER LOCATION 

With the assumption of randomly distributed excitation, the effect of the controller location on the 
optimal velocity feedback gain can be examined. Figure 7 shows the optimal velocity feedback 
gains as calculated with the Levine-Athans algorithm, with an R of 1P10-5. For secondary force 
positions between 0.1 and 0.9 times the length of the beam, the optimal velocity feedback gain does 
not change very much. However as the controller position approaches the pinned ends of the beam, 
the gain varies a lot more. A direct relation between the local variables and the feedback gain is not 
clear from these results. To get more insight into this problem a simpler model is studied. 
 
Two-mode model 

The simplest useful model that can still be used for this problem is a beam of which only two modes 
have been taken into account. It is furthermore assumed that the modes are undamped. Using the 
theory from Levine and Athans, it can be shown that if the kinetic energy is the only relevant cost (R 
= 0): 
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for this undamped case A is equal to: 
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From the equation for J it can now be seen that large parts of K are not relevant for the calculation 
of the cost. In fact, only the 3rd and 4th on-diagonal elements, K33 and K44, are needed. These can 
be calculated analytically from the Lyapunov equation. J is equal to the sum of these two terms. 
Differentiating J with respect to the single channel feedback gain f, equating to 0 and solving for f, 
results in two solutions that are equal but opposite. The negative solution can be dismissed as it 
does not stabilise the system.  
The equation for the optimal feedback gain, minimising kinetic energy for the undamped two-mode 
model,  then is: 
 

2
2

4
1

2
2

2
2

2
1

2
1

2
2

2
1

2
1

4
2

2
1

2
2

2 ωωωω
ωω

Ψ+ΨΨ+ΨΨ+Ψ

−
= mL

fopt  

 



Proceedings of the Institute of Acoustics 
 
 

This equation will be referred to below as the ‘two-mode formula’. The assumption has been that 
both e 1 and e 2 existed and are non-zero. If either is zero, this would result in an infinite cost for one 
mode, because the initial impulse would not die out. The other mode could be clamped with an 
infinite f to minimise the cost of that mode. It should also be noted that the derivative of the cost 
function J also does not actually have a root at that point. However, even though the optimal value 
should logically be infinite and the two mode formula was derived for non-zero e 1 and e 2, it still 
gives a finite value if either is zero. The optimal feedback gains calculated with the two-mode 
formula for the beam are shown in figure 7. It can be seen that these values are considerably lower 
in the area of 0.25 - 0.75 of the length of the beam, than for the Levine-Athans algorithm. When 
these gains are applied to the full beam model with 30 modes, the performance can be compared 
with the optimal gains calculated with the Levine-Athans algorithm. In figure 8 the change in kinetic 
energy of the beam relative to the uncontrolled case, has been depicted for both sets of control 
gains. The fact that the performance of the Levine-Athans algorithm drops off right at the edge in 
comparison to the two-mode formula shows that the cost associated with the input does indeed 
influence the result. Even though the two-mode formula is not optimal for the 30-mode model, the 
performance is close to what is optimally achievable in this single-channel case.  

5 MULTICHANNEL SYSTEMS 

In the previous sections three different methods of calculating an optimal feedback gain were 
examined: by examining the kinetic energy upon a set of gains (gain-by-gain), the Levine-Athans 
algorithm and the two-mode formula. In this section these methods will be compared in terms of 
performance in a 2x2 multichannel system. The gain-by-gain method and the Levine-Athans 
algorithm can both be used to calculate both a centralised controller and a decentralised controller. 
The purpose of this analysis is two-fold, first, to establish if the two-mode formula still gives results 
that are close to the optimal performance and, second, to investigate whether if the performance of 
a centralised controller is significantly better than a decentralised controller. 
 
5.1 Gain-by-gain method 

The gain-by-gain method is a computationally intensive method for finding an optimal gain for a 
single control location. For the multichannel case the number of calculations needed increases 
dramatically, as it is linearly related with the number of possible combinations of feedback gains. If 
100 values are allowed for the four elements of the feedback gain matrix F, then the total number of 
combinations is 1004.  
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For this reason, the decentralised controller is considered first. This requires the calculation of only 
1002 possible combinations. The excitation is assumed to be randomly distributed as described in 
section 3.1. Figure 9 shows the change in the cost calculated through solving the Lyapunov 
equations as described in section 5.2. This change has been calculated for different gains of the on-
diagonal elements of F. The control forces are assumed to be at 0.11 and 0.6 of the length of the 
beam. It can be seen that the performance is relatively insensitive to changes in the feedback gain: 
a large change in gain is required to give a 1 dB drop in performance. This confirms the result that 
was obtained for the single channel case. 
 
The centralised controller is based on the decentralised controller. It is assumed that the on-
diagonal elements of the controller will not differ much from the actual optimal gains of the 
centralised controller. Therefore only the off-diagonal elements are changed to see if better 
performance can be obtained. Figure 10 shows the result of changing the off-diagonal terms. The 
improvement in performance is minimal between the centralised case and the decentralised case 
and again the performance is not very sensitive to changes in the gain. The values of the optimum 
decentralised controller and the performance values are shown in table 2.  

5.2 Levine-Athans algorithm 

The Levine-Athans algorithm converges to an optimal value, rather than having to go through a set 
of possible gains and selecting the optimum gain. Geromel and Bernussou5 showed that by setting 
all off-diagonal elements in the update equation of F to zero, one obtains the optimal values for a 
decentralised constant gain feedback. The results for xs = [0.11, 0.6] have been depicted in table 2. 
 
5.3 Results based on two-mode formula 

The two-mode formula can only give a value for a single feedback loop. Thus it can only give 
meaningful values for a decentralised controller. The results for these values have been depicted in 
table 2 for xs = [0.11, 0.6]. 
 
Table 2 shows that for these locations of the control systems, there is no significant difference in 
performance between the centralised and decentralised controllers. The two-mode formula 
performs worse than the other optimisations. Whether the small performance difference between 
centralised and decentralised control holds in other cases or that it is location-specific is further 
examined in the next section, in which results obtained through the Levine-Athans algorithm will be 
examined. 
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5.4 Centralised and decentralised control 

This section compares the results of the Levine-Athans algorithm for decentralised and centralised 
constant gain feedback. The results that are examined are the reduction in kinetic energy in 
comparison to the uncontrolled case, when randomly distributed forces excite the beam. The results 
are obtained for a grid of different control location for a 2x2 multichannel system. The locations of 
the control systems, xs1 and xs2, are evenly distributed along the beam.  
 
Figure 11 shows the change in kinetic energy obtained with the decentralised controller, calculated 
with the Levine-Athans algorithm. When the two controllers are located at the same position, then 
the problem reduces to the single channel case, 
because global knowledge of the system is 
available. Figure 12 shows the change in kinetic 
energy, when the controller is allowed to be a 
centralised, i.e. fully coupled controller. The 
differences between figures 11 and 12 appear 
small. 
 
Figure 13 shows the difference between 
centralised and decentralised control, calculated 
with the Levine-Athans algorithm. The difference 
is small except when the two controllers are close 
together. This can be explained intuitively: as the 
controllers are further apart, the velocity at the 
two locations will lose correlation, thus if a 
constant feedback gain is used, the off diagonal 
elements may cause the controller to put energy 
into the system, rather than extract energy.  
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Figure 12: Difference in performance between 
the centralised and decentralised controllers  
for different control locations of a 2x2 system. 

 Gain by gain, 
decentralised 

Gain by gain, 
centralised 

Levine-Athans 
Algorithm, 
decentralised 

Levine-Athans 
Algorithm, 
centralised 

Two-mode 
formula 

F fghijk
570

044
 

fghijk
574

444
 

fghijk
670

049
 

fghijk
662

249
 lmnopq

170

068
 

Performance -13.2 dB -13.2 dB -13.2 dB -13.2 dB -12.5 dB 

Table 2: Feedback gains calculated in different ways for xs = [0.11, 0.6] and the corresponding 
change in kinetic energy with respect to the uncontrolled case. 
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6 CONCLUSIONS 

On the basis of the calculations presented here, the following conclusions can be drawn. First of all, 
it is necessary to make an assumption on how the system is excited, to be able to select a velocity 
feedback gain on the basis of the local properties of the structure. Assuming that randomly 
distributed forces excite the system is equivalent to assuming that the modes themselves are 
excited directly in an uncorrelated fashion. This assumption allows the selection of a single optimal 
velocity feedback gain minimising kinetic energy for a give secondary input position. For the single 
channel case the optimal performance can be approximated by a simple formula.  
 
It was also shown that for random distributed excitation the performance is not very sensitive to 
changes in the value of the velocity feedback gain. The change in performance, when using a 
centralised velocity feedback controller instead of a decentralised velocity feedback is also minimal, 
unless the controllers are located close together. 
 
Future work based on these results should investigate how these results compare to optimal power 
absorption strategies, as suggested by Elliott et al.8 for sound fields and investigated by Hirami9 and 
Sharp et al.10 for structural vibrations. It is also interesting to examine how the performance 
difference of centralised and decentralised velocity feedback changes for larger numbers of sensors 
and actuators. Further examination of the two-mode formula may allow an improved selection of 
gains, such that the performance is closer to solution provided by the Levine-Athans algorithm.  
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