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INTRODUCTION
Machinery rooms are sometimes involved with highsound pressure levels at low frequencies in a
narrow band of the frequency spectrum. In this case, acoustic resonators can be used to reduce the

sound level in-the room. If the available construction depth is small and the disturbing frequency very

low. the best solution is certainly to use a type of resonator with a stiff panel backed by a closed

cavity. We now propose a numerical method to qualify the acoustical performances of such a

resonator. This method takes into account the most relevant design parameters. The comparison of

numerical results to impedance measurements on real resonators shows good agreement.

THEORETICAL PROBLEM
For a given resonator,the best way to achieve an effective acoustic treatment of a room is to cover an

area as large as sible and the parallelepipedic shape is the most convenient one.
As a matter of act. surrounding influences a lot the behavior of resonators. Our model considers the

case of a parallelepipedic plate resonator baffled in an infu'rite rigid perfectly reflecting plane.
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Th modelling of a plate resonator baffled in an infnite reflecting plane (figure 1) must
simultaneously take into account: V

- the acoustic wave impinging on the resonator plate,
- the vibro-aooustic coupling between the resonator plate and the semi-infinite upper region,
- the vibro-acoustic couplin between the resonator plate and the air cushion. '

A pure tone analysis of this modellrng problem is made because the frequency bandwith of interest is
rather narrow. Therefore it is assumed that all the variables fields such as the acoustic pressure and

velocity fields, p and V, as well as the plate velocity field are multiplied by e‘Jm‘, where (ndenotes the
excitation pulsation. The model must lead to the determination of both the pressure and velocity fields
at the upper plate surface so that an estimate of the resulting absorption coefficient can be found. The
Helmholtz problem in the air cushion is then discretized using a finite element method. The vibration
of the resonator plate is also discretized using a finite element method for bending plate according to
Kirchoff assumptions. The Helmholtz problem in the upper semi-infinite medium is solved using a
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boundary integral method.

The equation to be solved is the differential Helmholtz equation :

Ap + 'k’pe s (1)
where p denotes the acoustic pressure field, it is the wave number equal Iota/c, c is the speed of
sound and s is a sound source density. The following boundary conditions must be satisfied :

Limr(grP—+jkp)= 0
I...

on a semi-sphere surrounding the semi infinite upper region:

35- juian on the plate surface;

35: 0 on the infinite perfectly reflecting and rigid plane baffle.
r denotes a point on a semi-sphere surrounding the semi infinite upper region, n denotes the normal to
the plane pointing downwards, V. = V . n and p denotes the fluid density.

 

The equation to be solved :5 the bending Vibration equanon :

Eh:
AAVn-Mswzvn = -jatl (2)12(1-v1)

Where E denotes the Young modulus, v the Poisson‘s ratio. M. the mass per unit area, h the
thickness of the plate , f the load per unit area applied to the plate. Ihe equation is to be solved subjectto different boundary conditions such as free, simply supported or clamped edges.

11te equation to be solved in the cavaty is the Helmholtz equauon :

Ap + k2 p = o (3)
The equation must be solved according to the boundary conditions = jman on the lower face of

the plate and 3%: 0 on any face of the cavity except the lower face of the plate.
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DISCRET]ZATION AND SOLUTION

w .

It is assumed that the plate used in real resonators is generally thin enough so that both the stress
normal to the mid-surface and the shearing stresses can be neglected. The Kirehoff theory for plate
bending is then used. The basic linear bidirnensionnal finite element. the Adini's rectangle [4], is

used. The normal velocity within an element Vn¢(x,y) is expressed in terms of a 4 odd polynomial :

V 2 3
V:(x.y) a (11+ azx 4» may + tax + + unity

= i Ur “tut”
i-l

where U denotes a vector of dimension 12 containing 4 nodal velocities, 4 derivatives of the velocities
with respect to the x direction and 4 derivatives with respect to the y direction. The functions eg are the

basis functions of the finite element discretization. The principle of virtual powers leads to the
resulting equation for the bending vibration of the plate: '

2 . 4 r
[K-(o) +Jm‘n)M]U = PG’m- Pm) (4)_ _.

where K, M and P denote respectively the stiffness matrix, the mass matrix and the coupling matrix.

. The general elementary term of the coupling matrix is defined as follows:

Fii = -5m em) N,(x.y) ax dy ‘ (5)
S .

P 1 is the vector of the nodal pressures loading the plate on its upper face and 1’1' 2) is the restriction
oi tire pressure vector in the aireushion to the nodal points on the lower face of tire plate. Nj denote

the finite element basis functions for the acoustic pressure. 1} accounts for the structural losses that

take place in the plate as it vibrates. Its value which is usually frequency dependent can be deterrnin
experimentally by modal analysis and the classical -3 dB method. »

Let g(r,r°) be the generalized Green‘s function :

.il Hal
9

80213) = (5)

This generalized Green's function is a solution of the free field Helmholtz equation with a Dirac
distribution source at r.. r denotes the vector position of the observation point in the propagation

medium ('2, or on its boundary an. The solution of equation (I) with the boundary conditions of the

upper region can be daived from the Helmholtz-Kirchofl' integral equation:

PU) = s(r°) G(r,r°) dvo

n

 

Bptr) BGO'J)
+ [G(r,ro) an° . p(r°) #] dsu (7)

an .
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-where G(r,r.,) is an appropriate Green's function. In the case of a semi-infinite medium bounded by
an infinite reflecting plane , the appropriate Green's function is:.

G(r.ra) = g(r.ra) + gum I , I .
where r", is the position vector of the image point source of no wrth respect to the infinite reflecting
plane. The derivative of G(r,ro) with respect to the normal direction to the reflecting plane cancels.

~ The resulting integral equation expressed on the plate surface is:

120,) = 50,) + 25 co 9 supra) V..(r°) ctsa (8)
. mp .

where rp denotes an observation point on the upper plate surface and BOP is the upper plate surface.
The sound source contribution is defined by :

SOP) = '— s(rn) Gfero) dvo _ _ (9)
n

The discretization of equation (8) on the upper plate face leads to the following matrix equation:

P“) = S + R U , (10)
where the components of vector Pm are defined by the values of p(r,) on the discretization points ofthe plate mesh. R is a rectangular matrix whose general elementary term is defined as:

Rij = Ziwp g(ri.r,) e500) dso (ll) .V »
SI

The functions e- are the plate basis functions defined above and vector U represents the nodalcomponents of the normal velocity field at the plate surface. Vector S represents the contribution ofthe sound source 5 and its components are determined by the volume integral (9)‘

We use here the classical finite element method to solve the Helmholtz equation [6]. An eight nodeisoparamettic element is used, [2]. The acoustic pressure field can be defined in terms of basisfunctions of this element such as: -
I

Pa) = 2 Pa" N‘(XIYIZ)

and the resulting discretired matrix equation is:
5" 3“ PT“) ] I: H ]

[‘3" ,5“ ] [ Pea) = 0 U (12)
where matrix 3 represents the discretized differential Helmholtz operator. Its representation in four
blocks allows one to separate the terms related to the lower plate face (superscript r) from the terms
related to the cavity (subscript c). The rectangular matrix H which stands for the coupling between theair cushion and the vibrating plate, is defined by its general elementary term:

jmp Ni(x,y) ej(x,y) dx dy (13)
s

H“
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This matrix is very similar to rectangular matrix F which stands for the coupling between the
vibrating plate and the semi-infinite upper region.

The problem has been set into equations in each of the three regions of interest. namely the semi-
infinite upper region, the plate and the cavity. The coupled problem can now be solved by gathering
the three equations (4), (10) and (12) into a general system of equations. The inversion of this system
provides the solution in terms of pressure vector P], at the upper plate face, nodal components of
plate velocity vector U and pressure vector Pa) in e cavity. The contribution of each region in the
global solving matrix appears in the following matrix equation :

t - 1a 0 0 Pa) 5

- F K - (m2+jon)M 1? 0 U o 14

o _ - H a" E" P22) " o ( )

o o are an P°at 0
Where i’ denotes the identity matrix, R is the matrix which accounts for the coupling between the
upper region and the plate, )3 is the plate load matrix, K is the plate stiffness matrix, M its mass
matrix, 3 denotes the matrix describing the behavior of the cushion, BI is the matrix accounting for
the coupling between the cushion and the plate, U represents the nodal components of the plate
velocity vector, P(1) is the nodal pressure vector on the upper face of the plate, Pray is the restricp'qn

of the cavity nodal pressure vector on the lower face of the plate, Pca) stands for the nodal pressure
vector within the cushion except on the plate face and S is the contribution of the harmonic source to
the pressure field on the plate. .

COMPARISON'OF NUMERICAL‘AND MEASUREMENT RESULTS

The aim of this experiment is to test various clamped plate resonators with a single design parameter
varying in each configuration. The specific effect due to the change of the considered parameteis'can
then be analysed on various measurement data such as the frequency dependance of acoustical
impedance. Measurements are performed in two steps :

- first to evaluate the resonances of the clamped plate without the resonator air cushion,
- then to measure the resonances of the clamped plate backed by the airtight cushion so that the

influence of the air backing is emphasized.
The measurement of the modes of the plate without the air cushion is made using a modal analysis
technique. The measurement of the resonances of the plate-air cushion resonator is achieved by means
of an original three microphone impedance measurement method [7]. The frequency dependance of
the local complex impedance of the resonator with and without porous material partially filling the
cavity has been evaluated. Various combinations 'are tested using five different plates made of
aluminium, bakelite, plex_iglass and plywood that could be clamped to three different cavities,

For each resonator, the specific impedance is measured in the frequency range [0-300 Hz] at different
points on the plate. As expected, the sign of the imaginary part of the impedance changes from minus
to plus whenever a resonator resonance is reached. At the resonance frequencies the imaginary part of
the impedance is zero. They can therefore be located with accuracy. For all the resonators tested,
several resonances are located in the frequency range [0-300 Hz]. The changes of the sign from lus
to minus in the imaginary part of the impedance can be interpreted as the anti-resonances o the"
system. _ . ,
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Figure 2 displays the velocity frequency response obtained with modal analysis for a clamped
aluminium plate (length 0.750 m, width 0.500 m, thickness 0.003 m) without any cushion backing it.
The first measured resonance at 73.12 Hz is slightly lower than the first theoretical in vacuo
resonance [3], 79.33 Hz. as expected because of the air-added mass effect. Figure 3 (a and It)
presents the frequency curves of the specific impedances measured and computed at the centre of a
resonator plate. For this resonator, the air cushion is 0.05 m deep and it does not contain any porous
material. The analysis frequency range is [90-120 Hz] and the first resonance occurs at 103 Hz in the
measurement and at 100 Hz in the numerical results.

CONCLUDING REMARKS
The main remark to be drawn from the overall study is illustrated by Figures 2 and 3. The presence of
an aircushion backing a plate increases one in vacuo resonance frequency of the plate over four. The
three other resonance frequencies which correspond to modal patterns with an even order in one
principal direction at least remain untouched; for instance. the modal patterns (2,1), (2,2), and (LI).
The lower the in vacuo modal frequency, the greater is the ratio of the corresponding plate resonator

frequency to the plate in vacuo frequency. In the case displayed in Figure 2 and 3, the ratio if}; is
equal to 1.41 using the measured results, and 1.38 with the calculated results.
A simplified formula for the prediction of the first resonant frequency of a plate resonator [5] is
sometimes used:

r — 1 ' —-"°' ‘ H Msd
where fr denotes the first resonant frequency of the plate resonator, p denOIes the air density. c the
speed of sound in vacuo. M, the mass of the plate per unit area and d the cavity depth. This formula is
based on the simple mass-spring system where the plate acts as the mass and the cavity as the spring.
It may lead to relative errors of more than 50 % in the prediction of the first resonance frequen'c'y'of
the resonator in some critical cases. Nevertheless the computations made with this formula and using
the numerical model for an ideal resonator with a plate with free edges demonstrates that the simple
formula is perfectly accurate in this unrealistic configuration. In any other case, the best way 'to
predict the first resonance frequency of a plate resonator is to use a numerical model taking into
account all the couplings between the acousuc media and the vibrating plate; futherrnore, it allows one
to accuratelydetem-tine its overall absorption efficiency in terms of frequency.

1 l '

The design parameters to build a plate resonator are the following :
- the length and width ofthe plate
- the depth of the air cushion
- the boundary conditions at the edges of the plate
- the constitutive ritaten'als of the airbox and of the plate
- the type of porous material and the percentage of filling in the cushion
When one wants to tune a resonator at a given frequency f. the range of variation of these design
parameters must be first bounded according to the following practical remarks :

- The cross dimensions of the plate : let A be the wavelength Aug. A typical rule is to take the cross

dimensions less than In order to avoid the network effects, it is also advisable that is easier to fill
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the room area to be treated. One also should minimize the number of units used for a given area so the
cost is also minimized. The larger the surface of the plate. the lower is the cost of the treatment. All
the other parameters being constant. the first resonance frequency of the plate without the air cushion
tends to decrease as its surface grows. Beyond a certain value of this surface. the stiffness added by
the cushion is not sufficient to shift the first resonance of the plate to f. It can be demonstrated that for
a given surface, the fust resonance frequency of a simply supported plate increases with the ratio of
length to width. ‘
For a given f, the choice of a length equal to two times the width can ease the construction of the
resonator wall and reduce the number of units used and consequently the cost.
- Depth of the air cushion : let d be the depth of the air cushion. The value ofd must be small enough
so that the volume lost by the installation of the plate resonators remain small with regard to the
amount of volume lost when using Helmholtz resonators. '
‘ Boundary conditions at the plate edges : It is well known that the most efficient boundary conditions
are those which approach the free conditions. A compromise should be found between the
air-tightness of the cushion and the freer displacement at the plate edges.
- Constitutive materials for the airbox and the plate : the airbox must 'trap‘ the sound and be as light
as possible to ease the handling. For a given mass per unit area, the components of the airbox have

their highest resonance frequencies when their material is such that W is the greatesL The. p .
coupling with the airbox is then minimized. This is the best material for building an airbox of plate
resonator. The plate is made of a material presenting great structural losses so that a good amount of

, energy is dissipated at the resonance.
- Porous material filling the cushion : the experiments showed that the presence of porous material in
the air cushion decreases the plate resonator frequency of an average of 7% . It increases the pitch of
absorption by increasing the real part of the specific impedance towards l at the resonance where the
imaginary part is 0. It widens the range of absorption by decreasing the slope of the imaginary part
versus frequency.

. Since the losses take place within the porous material by friction between air and fibers it is advisable
‘ to chose a dense porous material with a large friction area between air and solid._ The presence of a
2.5 cm thick rockwool in a 5 cm deep cushion produces noticeable effects. '

. . . . fr ,
Wmfluencmetheram 1—70,] .

The use of the program for the case of simply supported plate ( length 1m and width 0.5 m ) provides
the following information : . .

The ratio Tar—fly is an increasing function of the mtiofi- h‘ere adenotes the length of the plate. It is a

decreasing function of E, a decreasing function of the plate thickness h. Figure 4 presents the

variation of fur—r]; as a function of gfor a simply supported plate ( length=1m, width=0.5 rn.

thickness=0.005 n1 . plate density=900 kg/m3. E=l.e10 Nlmz. v = 0.35) . For gin the range [1 - )0]

the variation of “fin is linear [9] but for stiffer cavities, i.e. d is small and for long plates, an

asymptote seems to be reached.
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Comparison between theory and experiment
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