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1 . INTRODUCTION

Sound attenuation in rigid ducts with bulk-reacting, sound-absorbent porous

liners or splitters has been fairly extensively studied both in the absence and

presence of mean gas flow in the space(s) between the absorbent layer (see, for

example, references [1—31). Moreover, the influence of wall motion on sound

propagation in rectangular ducts with flexible walls has been examined [4], in

a study of noise "breakout" from ductwork, and it has also been shown [5] that

structural/acoustic wave combinations exist wherein the energy flow can

concentrate itself predominantly either in the structure or in the fluid in the

duct.

No efforts appear to have been made to determine the effects of wall motion on

sound attenuation processes in flexible-walled lined ducts. In the analysis of

sound attenuation in acoustically lined sheet metal air-moving ductwork or

package silencers. it is of considerable importance to know how wall

flexibility affects both the attenuation process itself and the distribution of

energy flow in the structure and in the fluid contained in the duct,

part cularly where axial discontinuities ('structural" or "geometrical") exist.

In this paper, some of the effects of wall flexibility on sound attenuation in

ducts having bulk liners are examined. A finite element (FE) structural and

acoustic model is described, and experimental results are compared to numerical

data.

2. TIIEOIIY.

2.1 Geometry and governing equations.
The geometry of the problem to be investigated is illustrated in figure 1a. A

prismatic duct lies along the z axis of a cartesian coordinate system. Its

cross section consists of an airway (region R0 ) and an acoustically absorbent

liner (region R ). The wall of the duct is rigid except for a thin elastic

plate adjacent.%o the liner (contour C in figure 1b). The acoustical pressure

in the duct, p (x.t), and the lateral aisplacement of the plate, u (s.z,t),

vary harmonically with time so that

p'(x,t)=p'(x)eint and u'(s,z,t)=u'(s,z)eint

The acoustical equation in the duct is then
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vzp'¢ k2 p' = 0 , where k = ko (real,= n/co) in the airway, (l)
= ka (complex) in the liner .

The time harmonic version of the unsteady plate equation is

9(62/852 + azlazz)2u'- qnzu'= p', on c3. (2)

where 'g' is the flexural rigidity of the plate and ‘q' its mass per unit area.

The pressure and displacement are further coupled through the kinematic
constraint on C3 which requires

(1/panz)1p'.l13 = u' on c3, (3)

(pa is the a complex density for the liner consistent with the choice of a
complex wavenumber ka). Boundary conditions on the duct perimeter and at the

interface between the airway and liner are:

gp'.n1 = 0 on C1 (rigid wall), (4)

p'o = p'a on Ca, (continuity of pressure). (5)

and (1/poflz)[D'o-flz] = (llpanznsp'a-nz] on C2 . (6)

(continuity of particle displacementL

(note: p' and p' denote acoustic pressure in R and R .a o a o

2.2. Forlulotion of the eigenvalue problll.
Solutions for u' and p' are now soughtwhich have the form

p'ix)=p(X.y)e"“z and u'(S.z)=u(s)e“°z. (7)
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Figure 1. Geometry of the duct and its cross section.
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These represent coupled structural/acoustic modes propagating along the duct
with the same (complex) axial wavenumber ‘a'. Substitution of-expressions (7)
into equations (1) and (2) yields

V2p'+ (kz-az)p'= 0 in R0 and Ra, (1a)

and 9(d4u/ds4 - an dau/ds4 + (04-kp4)fl) = p, on C3, (2a)

where 'vz' is the 2-D Laplacian (azlax2 + azlayz) and where kp4 = q 02/9.

Boundary conditions (3)-(6) are unaltered provided that the superscripts ' are
dropped from the variables 'p' and 'u' and provided that the gradient operator
1 is re-interpreted in its two dimensional form as (ap/ax,ap/ay). The above
equations pose a non-linear. complex eigenvalue problem in 'u'.

2.3 m variational stat—m.
Equations (la) and (2a) are 'Euler' equations for the functional

Fium'om'a) = i F0 n2 Ic§g(ussz + 2°2“52 + (u4-kp4iu2) - "Palds +

8 fRéZPo-Epo'(koz'32)PoZ}dXdy * ¥(Po/Pa)fkggpa'flpa'(ka2'az)PazidXdY-

(5)

They arise naturally from the variation of 'u' and 'p' respectively. Moreover,
boundary conditions (3),(4), and (6) emerge from the same process as 'natural'
boundary conditions associated with the variation of p, provided that p is not
specified on C1 or C and provided alsothat the class of functions from which
it is drawn explicit y satisfies boundary condition(5) (i.e p =po on C2). The
'natural' boundary conditions associated with the variation of 'u' then
correspond to clamped or simple supports along the edges of the plate. The
solution of the eigenvalue problem posed by equations (1a) and (2a) and by
boundary conditions (3)-(6) therefore reduces to the location of the stationary
values of functional F. This is achieved in an approximate form using a
Rayleigh-Ritz approach with trial functions defined by an FE model for the duct
and the plate.

2.4. The finite slant Idol.
Trial functions are formed for 'p' and 'u' by dividing the duct and plate into
discrete elements. In the present analysis, nine noded isoparametric Lagrangian
elements are used for the duct and two noded Hermitian Tine'elements for the
plate (see figure 1b). The nodal values of acoustic pressure, pl, p2,....pna
say, then define the pressure field in the airway and the liner. The degrees
of freedom of the structural representation are the nodal displacements and
rotations (about the z axis) ateach structural node. These are denoted by
d1,d2....dns. The finite element discretisation may then be represented in
matrix form as,
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p=[N1(X.y)... N"S(X.y)] pi = II p, and u=[Sl(s),.. sn5(s)] d1 = s 4.
p2 “2
Pn &"5 9.10)

where Ni(x,y) and S§(s) are the global shape functions of the acoustic and
structural meshes. ubstitution of (9) and (10) into expression (8) then
approximates the functional F by an algebraic expression, F'say. where

P=gtflna+dTnp+flaTd+NCp1=[flmfir a]?

BT c
11)

and where

A = ,0 n2 fc§g(sssTsss + 2aZsSTss + (a4-kp4)sTs)}ds. (12)

a = ,0 n2 fc{STI}ds, (13)
3

A= I (flu/P){9('xT'x +IyTIy +(a2-k2ndexdy. (14)R0+Ra

(where p=pa, k=ka in Ra, and p=p°, k=ko in R0).

In terms 0 their dependence on 'a', the matricea A. B and C are of the form ;
A = A0 + 0 A2 + u A4, I = so and C = co + a 62. where A0, A2, ,... C: are
constant. The stationary values of F' are then obtained by equating its
derivatives, with respect to the components of d and p. to zero. This gives

i; 21mm or [iiiiiiuzf—Liaii‘ sums}
which may be converted into a symmetric, linear eigenvalue pFoblem in 'az' by
factoring the matrix A4 into gower and upper factors L and L and by
introducing a new vectord'=u L . Equation (15) then becomes

Hi 5:: EM EJJE'HEI- ' as)
This produces 'na+2(ns)' coupled eigensolutions. The uncoupled structural and
acoustical modesare obtained by removing the coupling matrix 50 to give two
independent eigenvalue problems:

see Proc.l.O.A. Vol 12 Pan 1 (1990)
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(a) the uncoupled structural problem ('2(ns)'modes)

HT. Kiwi: illiii'HZ].
(b) the uncoupled acoustical problem ('na' modes)

[ co «.2 chp =0 (18)

2.5 Ind-I representation of o rigid/flexible transition.
Consider now the sound field in the vicinity of an abrupt transition from a
rigid walled duct, in the region z<0 say, to a flexible walled duct, in the
region z>0. The incident sound field in the rigid walled duct is known and the
flexible walled segment is anechoic. The eigenmodes produced from the solution
of equations (16) and (18) can readily be combined to produce a complete
solution for the sound fieldon either side of the discontinuity.

Let the eigenvalues, pressure eigenvectors and structural eigenvectors produced
by thesolution of the coupled problem (e nation (16)) be denoted by azi,Pi
and di respectively (i=l,nt where nt=na+2?ns)). The analogous modes for
prgblem (18), that is, for the same duct but with rigid walls' are denoted by
a' - and p‘j say (j=l,na). In both cases the eigenvalues , of and a'i, are
chosen with negative complex parts and correspond to 'positive' modes, in the
sense that they attenuate in the positive 2 direction. The sound field in the
region, z<0, may then be written as a superposition of positively and
negatively propagating modes in the rigid walled duct. that is, the acoustic
pressure p'(x) may be written

na

p'(x) =n_1l {an* p'n exp(-ia'nz)+ an’ p'n exp(+ia’nz)}, (19)

whére the incident coefficients, a +, are known and the reflected coefficients
a are to be determined. Similar y, the acoustic pressure and structural
displacement in the region. z>0, are given by

nt nt
p'(x) = z I {bn‘ph exp(-ian1)} and u'(z,s) = z s {bn+ dn exp(-ianz),

n=1 n=1 (20)

where the transmission coefficientsI bn*, are unknown. Acoustic pressure and
normal particle velocity may then be matched across the plane z=0 . This may be
done using point collocation (since the transverse mesh is identical in both
regions) and produces 2(na) linear equations for the (na + nt) unknown
coefficients (ai‘, i=1,..na, and bj‘ j=1,...nt). To complete the equations. it
is necessary to specify the way in which the plate is secured at z=0. In the
present instance, it is clamped and the displacement field given by expression
(25) is constrained so that 'u' and au/az' are zero at z=0. This yields the
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'Z(ns)' additional equations required for the determination of the unknowncoefficients. These may then be substituted back into expressions (20) and(21) to give the sound field in the duct. ‘

 

    
   

3. MEASUREMENTS   
Figure 2 shows the experimental arrangement. A loudspeaker, fed with asinusoidal signal or white noise, radiated into a rigid—walled section of
rectangular lined duct, followed by a lined duct section with three rigid wallsand one flexible wall, rigidly clamped along its sides and where it joined thefully rigid section. At the far end of the ductI a sound-absorbing terminationlargely eliminated acoustic reflections, and wedges of structural dampingmaterial attached to the flexible wall reduced structural wave reflections. Theacoustic absorbent was a fully reticulated polyurethane foam 30 mm thick, witha steady viscous flow resistivity of 6230 S] rayls/m. Its bulk acoustic
properties were measured in separate tests by using an impedance tube. The
flexible wall was of aluminium, 0.54 mm thick and 100 mm wide; the absorbentwas placed next to the flexible wall, with a very small air-gap between thetwo. Sound pressure data were taken at a series of axial pressure tapping andvibrational data were taken along the wall. Because the metal bars used toclamp the flexible wall had a small degree of transverse curvature to theirnationally flat sides, the wall was actually clamped a small distance from thecorners of the bars, and the effective width of this wall was 107 mm.

d. EOIPAIISDI IETHEEI IUIEIICAL AND IEASHRED DATA.

  
   
  

     

     

    
    

   

  

   
  
   

    
  

 

  

  
   

   

Figures 3 and 4 show the real and imaginary parts of the computed axialwavenumber, as a function of frequency (the imaginary part has been convertedinto an attenuation per unit length), for the least attenuated modes in thetest duct. Also shown are the exact (see [1]) corresponding values for a lined,but rigid-walled, duct. The (real) axial wavenumber of the first uncoupledstructural mode (see [5]) is also shown.
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Figure 2. Experimental duct.
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Although not shown, the FE values for the uncoupled acoustical and structural

wavenumbers (obtained from the solution of equations (17) and (18)) could not
be distinguished, to the scale of Figures 3 and 4. from their ‘exact'

counterparts.

At all frequencies there is one coupled mode corresponding to the least
attenuated rigid-duct mode, but this alternates between modes I. II and III.

This role changes from I to II through the first structural resonance (at 260

Hz), from 11 to III through the second resonance. and so on. Coupling occurs at

these frequencies between modes which are predominantly 'structural' and those
which are predominantly 'acoustical',.and appears to be the mechanism for the

attenuative peak at the first resonance. Its presence is supported by the

experimental data in Figure 5, where the measured attenuation beyond the
rigid/flexible wall transition and values computed from the modal solution of
Section 2.5 are compared. Two sets of'measured data are shown: those based on

the average slope of the axial sound level, and those measured directly as the

difference between values at the transition and a point 1 m beyond it.

Figure 6 shows the axial wall displacement on the centreline at 300 Hz.

Correspondence between measured and computed values is good. Both clearly

demonstrate the presence of significant modal mixing.
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Figure 3,4,: axial wavenumber (real part) and axial attenuation, test duct.
——- FE soln..—-—exact(lined,rigid).—-—exact(lst struct.mode).
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Figure 5: Effective attenuation: Figure 6: Hall displacemnt:
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Comparisons of measured and computed results indicate that the effects of wall
flexibility on sound transmission in hull: lined ducts are accurately modelled
using an FE formulation, and that these effects are significant in the vicinity
of structurai'resonances. The coupling between 'structural' and 'acoustical'
modes is then’ quite strong and produces unexpected results, rticularly in
regard to attenuation. when compared with the acoustical fie d in an equivalent
duct with rigid walls.
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1. INTRODUCTION

Conical pipes connecting two pipes of constant but differing diameter often form elements of
acoustically excited flow ducts. Normally. excitation frequencies remain sufficiently low so that
the transverse dimensions of all pipes remain a small fraction. with the lengths of conical pipes a
modest fraction. of the acoustic wavelength. One can then assume that the wavefront: of the
sound propagating in the uniform pipes remains effectively plane.while the wavefront shapes in
the conical pipes will be spherical. It is convenient to subdivide such elements into two further
classes. One such may be treated as sufficiently short that both the hydrodynamic and acoustic
behaviour corresponds closely to that for an abrupt expansion or contraction in area. This case can
then be modelled approximately. but perhaps realistically in practice. by adopting the analytical
methods describing wave propagation across sudden area charges outlined, for example, in
reference [1]. Here appropriate allowance has been included for flow separations at the comers
with the consequent flow and acoustic losses that occur. Nomally. flow contractions can be short
without meaning undue losses. but this is not generally true with expansions.

The other class. which forms the subject of this contribution. includes those examples of
expanding flows where the axial rate of area change is sufficiently small that flow separation is
avoided. (What follows is also applicable to long gently contracting nozzles, which are relatively
less commonly found). With this restriction the flow can be regarded as homentropic and
irrotational so that the relevant and recent theoretical analysis of the acoustic behaviour, presented
in references [1] and [2]. is then appropriate. An outline of the discussion given there is repeated
here. with some relevant experimental observations.

it] Geometrical features

The geometry concerned is illustrated in figure 1, showing a cone of axial length l with taper angle
a. connecting a smaller pipe. diameter 2110. where the mean flow Mach number is M0. to a larger
one. diameter 2a]. Transfer between the plane wave motion in the pipes and the spherical wave
motion in the cones is assumed to occur within the lens shaped control volume V, shown hatched.
This is bounded by a plane surface of area SP and a spherical cap of area SS. From the geometry (1

= aretan [(a1»a0)/l] with radial distance from the apex r = a,coseca.. Also 8., = itr2 Sinzu, 5s =

21tr2(l-cosu) and VI = (rt/3) r3 (l-cos u)7- (2+cos at). The maximum limit. implied by the
requirement that the mean flow remains attached at the cone walls, suggests a < 0.] radian or

thereabouts. With a = 0.1 radian the ratio SstD = l.0025. so that both SS and Sp will be taken
here. for convenience, as equal to their arithmetic average 8.. = (5p + $5) /2.
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  In the applications considered here r is of order unity or less in terms of acoustic wavelengths, so

that V, is a relatively small volume witlt thickness r(l - cos a) < 0.01 in the same relative terms.
Within each volume V,. mass will be conserved. the associated mass flux being those on the
outward normal direcrions on Ss and SP and momentum will be similarly conserved. The

fluctuating mass of the fluid within the control volume is involved in both the mass and
momentum balances, in effect providing an end correction at the junction. Within V, the

fluctuating motion associated with wave transfers at the ends ot‘ the cone is neither quite plane or
quite spherical. However. a permissible simple but balanced and quite accurate approximation is
to assume that each fluctuating quantity in V, is the arithmetic average of its plane Sp-side and

spherical Ss-side representations. With this approximation. the representative average thickness of

the volume of fluctuating mass associated with the two bounding surfaces Sp and S, will be
expressed by T,= (1/2) V/Sr.

 

  

      
    
    
   

  
  
   

        

  
   

   
  

    

  

2.1 Wave motion in the cone

With modest values of the mean flow Mach number Mo < 0.2. it can be readily demonstrated [2]

that the flow temperature remains constant to better than 0.8%. implying that the speed of sound c
in the cone can be assumed a constant co to better than 0.4%. The approximate analytic solution

developed in [2] assumes purely ndial flow in the cone so that the mean velocity is proponional to

(rolr)2 and the Mach number at any r. M, = (r,,/r)2 M0. The pressure. p, mass density. p,and
particle velocity, u, inthe cone are functions of r and time t, while the corre nding variables in
the pipes are functions of the axial position x and time t. One can express all ese variables asthe
sums of mean and fluctuating quantifies, the latter having zero time averages. Thus p (r.t)_can be

expressed as Fm + p'(r,t), and so on for the others. For potential flow. with ¢(p,t) = o (r) +

¢‘(r.t) one has u(r.t) = 41/3: - 3¢'(r.t)/3r. As there is only one space co-ordinate involved as

an independent variable. the velocity is irrotational. For simplicity the flow is assumed to be
homentropic.

Conservation of mass can then be expressed by

(t/c1)Dh/ot-V2¢=0 (I)

where c2 = yp/p. y the ratio of the specific heats. h the enthalpy per unit mass and mm is the

material derivative. With homentropic irrotational flow the expression for conservation of
momentum can be integrated to give a conservation of energy expressron

h + (1/2) (W)2 - (Wat) = ho (2)

where hD is a constant reference enthalpy. With an ideal gas where h = cZ/(y-l) it is shown in [2]

that with Mach numbers |V¢lc°l less that 0.2. c2 can be regarded as a constant in equation (2).

with spherical polar coordinates and purely radial flow. substitution for h from equation (2) into
equation (1) gives ultimately. [2],
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[c2- (3¢/3r)2] 314W +mm + (War) and «War- azwat? = o (3)

which must be satisfied by both mean and fluctuating components of the velocity potential o.

For the mean motion. for Mo < 0.2. after time averaging (3). it is shown [2] that the resulting
equation describing the mean motion is satisfied to better than :l: 4% at least by the velocity

potential 0 = -uor°2/r. which being proportional to r. satisfies Laplace's equation in re 5 r s r1.
It is also shown that equation (3) then reduces to

«:02 32¢‘I3r2 + 2[c02 Ir - no (r0102 a/at] Swat - alwafl = 0 (4)

which is linear in ¢‘(r,t), with coefficients that are only functions of r.

An appropriate compact solution [0 equation (4) expressed in terms of tin for waves travelling in

the positive rdirecrion and o' for those travelling in the converse was then found [2] to be

‘13 = (Gn'lr) exp [i (mt - ks*r)]. ks’ = (tn/Co) (1+Mr). (53)
¢‘ = (Gd/I) exp [i (w! - ks'r)]. kg' = (Wco) (I'Mr). (5b)

with Mr = (r,,/r)2 Me, which is again accurate to better than $47.: with M, < 0.2. Fluctuating
velocities and pressures in the conical pipe can then be found in the normal way from

u' = -a¢'/ar. p‘ = p (a/at + Fa/ar) o'. (6.7)

where p can be assumed constant [2,3] and equal to p0 and 7 = uo (to/nz.

2.2 Wave transfer at the condpipe junctions

Conservation of mass and momentum in the junction control volume V,. respectively, can be
concisely expressed in Cartesian tensor notation (i, j = 1,2,3). as

aJ%13V,+5Jpsusass + S] ppupasp = 0 (8)
r 5 P

aJamuflwaw-r SI(psusiusj+p5ij)dSSJ-+ 51(ppupiupj4» ppfiij) aspj=o. (9)
f s p
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(Here 5,3 is the Kronicker delta, equal to unity for i=j and zero for iaj). With the variables written
as sums of mean and fluctuating pans. with the latter assumed small so their squares can be
neglected. each of equations (8) and (9) can be separated into independent time averaged and
fluctuating pans. It can then be shown [3] with the temperature assumed constant within i0.8%
or better are also corresponding constant co throughout the system. it is consistant to assume that
the mean pressure and density are also constant everywhere in the cone. '

The fluctuations. being governed by linear equations can conveniently be expressed in term of the
Fourier coefficients of the fluctuating particle velocities and pressures of the component waves.

Thus. with plane waves of frequency a). (See reference [1]) one can adopt the well established
Substitutions

pp' = ppr + pp‘ = pf (0) exp i(LDl-kp"'x) + 1),; (0) exp i(u)t+k'pit). (10)

where kl,+ = k/(1+M, . kp' = kl(l-M,) and k = (tr/co. Also pf (0) corresponds to the amplitude of
the posrtively travelling waves at the origin for x. For fluctuating panicle velocities. the
corresponding isenu'opic substitution [1] is - ‘

pocouip = pp+ ‘ Pp'- ' (I l)

The corresponding fluctuating quantities in the cons. at frequency 0). are

us‘ = u; + us" = [(1/r) + ik (1-M,)] ¢s* +[(1/r)- ik (1+M,)] 05'. (12)

p's = poca [(ik - M,{(1Ir)+ kg] 435* + {ik - Mr {(1/1) - my” $51. (13)

Following the discussion concerning the averaged motion in V,, at the end of section 1.1. one

finds for example I (prr’at) dV, in equation (8) becomes simply (1/2) (apS/a: + app/at) Vr ,-
v

r

and similarly for the vol_u_me in_tegral in (9). Thus the fluctuating pan of the mass balance equation

(8) can be written with u s= u p= COMP as '

(1/2) imvr (9s. + pp‘) '-‘ Sr “30"; + CoMrPs') ' Sr “30%! + coMer‘) = 0 (148)

with T, = (1/2) V,/S, and the isentropic substitution p' = p‘/coz. rearranging. collecting terms and
multiplying through by co converts this equation to the more convenient form

(M, + ikTr) p's + pucous' = (M, 4m) p'p + pocou'p_ (14)

Similarly. the fluctuating part of the momentum balance (9) can be expressed as
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(1 + M} + ikM,T,) p; + poco (2Mr + ikT,) u; = (t + M,2 -ikM,T,) p'P + pace (2M,-jkT,) “8'.
15)

when p‘ and u' in equations (14) and (15) are expressed via equations (10) to (13). in terrrts of of
and ppi. then given either one pair they can be solved to determine the other. To avoid tedious
algebra. equation (15) can be simplified at the outset [3] be neglecting the terms M,2 and k M,T,
compared with unity and approximated by '

p; + poc‘, (2Mr + ikT,) u5' = pp' + pacD (2M, - rim) u'P_ (15a)

With similar simplifications. use of equations (10) to (13) with M} terms neglected) in equations
(14) and (15a) gives. after again neglecting terms which arise in Ml.2 and kM,T, in comparison
with unity, for the approximate mass balance.

Paco “(l/T) - szri (1)5" + (Pg) + ik 01's" ’ 4’59] = (Mr ‘ ikTr) (Pp+ + Pp') + (Pf- Pp'). (16)

and for the corresponding momentum balance

poc0 [((l/r) (M, + ikT,) + ik) (of + ¢s‘) + i.k(Mr + thT,) (¢s*- o; )]

= (pp" + pp') + (2M, - ikT.) (pf - pp). (17)
Wave transfers across the junctions between pipe and cone or cone and pipe can be calculated by
solving equations (16) and (17). Wave transfer along the cone can be calculated from equations
(5a) and (5b). This completes the theoretical analysis. It now remains to compare the predictions
with observations.

3.] Experimental procedures

A general model of an acoustic system is illustrated in figure (2a). Here. the element of interest(eg the cone) is represented by its scattering matrix ['1']. see ref [1]. and lies between its source of
excitation S and an acoustic load with impedance Z. The four complex wave amplitudes p11 and
p;1 yield four ratios which describe its in-situ acoustic characteristics. these are the two
transmission coefficients. defined by

Ti = Pt‘VPz". TY = Pt'/P2' (13), (19)
with reflexion coefficients

r. = tar/pr. r2 ='p2-/p2+ (20). (21>
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One notes that any 3 of the 4 serve to define all 4. Furthermore. if 2 is known, therz = (Z-pc)/

(Z+pc), so lhat‘any two others then suffice. in such cases, it is sufficient to measure, or calculate

say, Ti and r].

The pair of wave component amplitudes p1 and hence r1 and r2 can be measured independently by
the now well known two transducer method des‘cribed. for example, in reference [4] and
employed successfully be the author and his associates at Southampton for the past 15 years or so.
However similar estimates of Ti an Tr require a four transducer method, as described in references
[5. 6] with the experimental arrangement illustrated in figure (2b). Assuming plane wave
propagation and uniform mean flow. each of the complex amplitudes of the monochromatic
components Pn of the observed signals at stations 1, 2. 3.4 is the sum of corresponding

component wave contributions Pn+ and P,". Thus P] = P1+(o) exp (—iB+x‘1;) + P110) exp (ibxl).

where [St is the corresponding complex wave number [4] accounting both for mean flow and

wave attenuation, while P1110) are the component wave amplitudes at the correspoding origin for
x. With white noise excitation simultaneous records of the four pressures can be expressed in
matrix form: P = K.Po. where the vector P contains their Fourier transforms, Po contains the

complex wave component amplitudes P*(o) and the matrix K is composed of the corresponding
exponential terms. . .

Assuming the random pressure field in the system is stationary and ergodic. the spectral density
functions between two signals at stations m and n can be expressed as Smn(f). A spectral matrix
which contains all the auto and cross-spectral densities Smn can then be built

5‘0 = U” (0. PT (0) = K*r 5(0). K7. . (22)

where the operator l) represents an ensemble average an the star denotes the conjugate. The

matrix S(o) = (P; (i). POT (f) ) of the spectral densities of the component waves can be

estimated by inverting (22).

5(0) = K‘-1. Sp. K-T

The refiexion and transmission coefficients are estimated as transfer functions of a single input
linear system. with the less noisy upstream Signals chosen for the inputs. .Furthcr details can be
fond in references [5, 6].

3.2 Comparison of measurements with predicu'ons

Observations of Ti and r, were made with a conical diffuser 0.24m long where 230 = 38mm and

2a) = 71 mm, giving at - 0.07 radian, with mean flow Mach numbers ranging from zero to 0.2.
The tailpipe of diameter 2a1. attached to the cone outlet, was 1.0m long. its acoustic impedance
representing the load Z in figure (28). The signal was excited with white noise at a level well
above background noise over the fre uency range of interest and the spectral density functions
were calculated from signal records 1 sec along with an averaging bandwidth of to H2 yielding
estimates with some 400 statistical degrees of freedom.  
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Preliminary results of measurements of Ti and r] indicate that a close agreement exists between

them and predictions calculated with the analytical relations set out in section 2. More
comprehenswe comparisons will be reponed in due course.
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A MODEL OF FlNlTE AMPLITUDE SOUND PROPAGATION IN HORNS

K R Holland & CL Morfey

lSVR University of Southampton

I. INTRODUCTION

The high electro-acoustic efficiency of horn/compression driver loudspeaker systems leads to

their use for the production of high sound pressure levels. In order to produce high levels in

the far field, very large acoustic pressures must be present at the small throat of the horn and

especially in the phase plugs of the drivers. A high quality compression driver typically has a

sensitivity of 143dB SPL into a plane wave tube for [W of electrical power input. The same

driver may have a thermally limited maximum power capability of 100W leading (assuming

linearity) to acoustic pressures in excess of 160dB SPL at the throat of a born. When the

typically 20:1 compression ratio for the driver is considered. acoustic pressures in excess of

lSOdB SPL are possible at the diaphragm. It is clear from the above maximum levels that

linear acoustic modelling of the horn and driver will not be accurate at high drive levels.

Of the many sources of system nonlinearity possible at these levels. three are cxpeclcd to be

predominant. One involves the electromechanical limitations of the driver. including thermal

power compression effects. magnet/gap problems etc. The second source of nonlinearity

involves the volumetric changes in the cavity between the diaphragm and the phase plug, and

the third. with which this model is ooncemed. involves propagation nonlinearily leading to the

possibility of the production of shock waves in horns and drivers. Whereas the fist nonlinear

mechanism is common to all electromagnetic loudspeakers. the second and third mechanisms

are peculiar to horns in that they are acoustic nonlinearities.

2. DESCRIPTION OF MODEL

If it could safely be assumed that the sound field within horns and that radiated to the far field

consisted of a m‘ngle progressive wave from throat out to infinity. the calculation of the sound

field. to reasonable accuracy. for finite amplitudes would not be too difficult However. all

practically realisable horns suffer reflections from the mouth termination and often from

discontinuities within the horn flare. This being the case. it is impossible to follow the

propagation of a wave from the throat to the mouth and back again as is possrble for

infinitesimal amplitude (linear) modelling because linear superposition does not apply and the

forward and backward waves will interact in an unknown manner. It is therefore necessary to

model the system "backwards" in time from the far field. where linearity is assumed. to the

throat. In the model described below. nonlinear props ation has been modelled in this manner

initially by investigating what input waveform woul be neceSsary to produce a sinusoidal

output in the far field (a form of tare-distortion).

In order to model horns of arbitrary shape it is necessary to split the horn into short exponential
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elements. Hawever. because the interaction between the forward and backward waves is likely
to vary within the space of one wavelength. the model may require many elements of length
not greater than a fraction of a wavelength of the highest frequency of interest (possibly
including harmonics).

The soecd of propagation of a sound wave at a point is dependent upon the local pressure and
particle velocity at that point. In a free. progressive wave this results in the positive half cycle
of a wavefomt propagating faster than the negative half cycle giving rise to steepening of
sinusoids and eventual shock formation. Under most conditions at moderate levels. dissipative
mechanisms in the sound medium and the large propagation distances involved prevent this
from being significant, and linearity can safely be assumed. The situation within homs at high
levels is not this simple. The characteristic impedance of a wave within a horn is usually
complex due to phase dispersion and reflections. so the equations used for the calculation of
waveform steepening in free. progressive waves cannot be used. Instead a more universal
equation for the local propagation speed (C(tl) is used:

't’-l

ctt) = c» {1°}le i 21: u(t) ‘ (1)

 

where Cc is the linear assumed sound speed for the particular static pressure (Pu), mo and u(t)
are the instantaneous total (forward & backward waves) acoustic pressure and particle velocity
respectit ely. 7 is the ratio of the specific heats of the sound medium and 1 refers to calculation
for forward and backward waves respectively. ' The “time advance" (T) of a portion of a
waveform compared to its linear propagation can then be calculated:

To): - - . (2)

where -l is the distance propagated. The concept of a negative propagation distance is
introduced to avoid the complications involved with negative time and hence negative
velocities. These propagation speed ealculations can only be carried out in the time domain.
where calculation of the dispersive and reflective properties of a horn are difficult. To
orercome this problem, calculations are carried out both in the lime domain and in the
frequency domain and linked via 256 point Fast Fourier Transforms. The following is a
description of the model, a flow diagram is shown in fig].

A starting waveform (pow) is defined as the desired output. along with the coordinates of the
horn and the output impedance (70(0). The output pressure waveform is transformed into the
frequency domain (pm) and a closed form linear solution of Webster‘s Horrt Equation [1]. uses
the horn coordinates and the output impedance to separate out the forward and backward
pressures and particle velocities (patDpamautt‘) & uat'!) resp.) and propagate them back to the
end of the element. The two pressures are transformed into the time domain and added (p'r(t))
as are the particle velocities (u'r(t)). These total waveforms are used to calculate the
propagation speeds (cat!) & ca(l)) for every time point using equation (1) which along with the
horn coordinates (to obtain the element lengths) are used to calculate the time advances for
every time point. These time advances are checked at this point to ensure that none of the time
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points "overlap" indicatin shock generation. lf shocks are detected. the programme stops and
announces the presence at;a shock (the model cannot as yet handle shock propagation). Each
of the four separate lime waveforms (p.\(l).pB(l),IM(l) 8: ua(t)) are distorted using the time
advances and tesampled to maintain linear time spacing for FFT calculations. The two
distorted pressure waveforms are then added and tmnsfonned back into the frequency domain
and fed back to the start of the next element (p(f)). The particle velocity waveforms are also
added and transformed and used in conjunction with the total pressure to calculate the
impedance for the new element (2(0). The process is repeated for each element in turn until
the throat of the horn is reached or a shock is generated. The end waveform can then be
considered to be that input necessary to obtain the starting waveform (pa(t)) as an output.

The model as described appeared to work well but when tested with an increasing number of
elements. it was found that more elements were required than expected before the result
converged. If enough elements were not usedI the model tended to overestimate the
nonlinearity compared to the result for a large number of elements. This problem was traced to
the fact that the total pressure and panicle velocity values that were used for the speed of
propagation calculations were those that occured at the end (throat) of each element and as
such the calculations were always the “worst case"approximations to the actual nonlinearity.
To overcome this problem a weighting function (shown dotted) was introduced into the
calculations assuming that. for a gven forward or backward wave. the product of the pressure
and the square root of the area remained constant throughout an element. Because of the
exponential shape of each element. the integral of this function over an element appears as a
multiplying constant in both the pressure and particle velocity terms. The only other
assumption inherent in this is that the “distorting effect” varies linearly with pressure and
particle velocity over an element, this is reasonable for a short element. After this
modification. convergence was seen to be very much better and reliable results could be
obtained with fewer elements.

Another problem became apparent only when a large number of elements were used (n>20)
and the starting waveform was a sinusoid. It is reasonable to assume that any distortion should
appear only as harmonics of the continuous staning sinusoid. however when such a starting
waveform was used. after propagation through a large number of elements. spurious
frequencies were observed on the spectra. This was traced to the lack of any signal at those-
frequencies allowing the errors (noise) in the computations to appear as very large numbers in
the calculation of impedance at those frquencies (a small number divided by a very small
number giving a large number) which after a large number of elements allowed significant
values for pressm-e to appear. A first attempt to overcome this problem wu to "pad" the
starting waveform with a small delta function to give some signal at all frequencies. This
resulted in the amplification at low frequencies below the cut-off of the horn (where large
amounts of “input” were necessary at the throat to appear as small outputs on the starting
waveform) making the problem worse. Finally it was decided that for sinusoidal starting
waveforms. only the harmonics would be calculated in the frequency domain, all other
fiequencies being held to zero. This technique appears to work well. For transient starting
waveforms the problem does not occur.

Fig. 2 shows a sinusoidal starting waveform at the mouth of a typical midtange horn. Figs. 3. 4
& 5 show the throat waveform results for three different frequency starting waveforms. The
starting pressure and normalised impedance are l40dB and 1 respectively at the ham mouth.
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3. PROPOSED FUTURE DEVELOPEMENT

Although within the horn itself boundary absorption and dispersion effects may not
significantly effect results. if the model is to extend back to the diaphragm through the phase
plug where dimensions can be of the order of fractions of a millimeter, these efl'ccts must be
included. it is proposed to extend the model to include these effects. along with flow resistive
and turbulent phenomena. If this can be achieved. the model should prove a very powerful tool
in the analysis of finite amplitude standing wave fields in waveguides. The absolute accuracy
of the model is difficult. if not impossible to check because of the many sources ofnonlinearity
m the chain. This problem apart. it may be possible to drive a horn with the output waveform
from the model using an extremely linear driver and see if the output becomes sinusoidal as
level is increased. At worst, calculated values for harmonic distortion could be compared to
measurCmEnls. Tests of this kind as well as more general harmonic distortion measurements
are planned.

4. REFERENCES

[I] A G WEBSTER. "Acoustical Impedance and the Theory of Horns and of the Phonograph".
Proc. Natl. Acad. Sci. (11.8,) 5. pp 275-282. (1919).

88‘ Proc,I.O.A. Vol 12 Part 1 (1990)



 

Proceedings of the Institute of Acoustlcs

FINITE AMPLITUDE HORN PROPAGATION,

am Waveform |I !
Genqu lm xmce

Lkflim—J |__..__t

l 9"")

i J_I i
I ' LF—IIT—J I H 12.10

i 'pu") ' 9

  

| Tnnifel _ I
I I I Function I I

l \‘ I

l i i
I
| E
I i

' .s
I !

: i

I i
|

It

i
1

i

¥
I
l

i

i
3

2"}

Fi3. I FIn»- Cher!for Finite Amp/[Me Horn Model.

Ploc.l.O.A. Vol 12 PM! 1 (1390) 885



  

Proceedings of the lnstituta‘of Acoustlcs

l-‘INITE AMPLITUDE HORN PROPAGATION '

838

One Parameter Finite Amplitude Model   
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One Parameter Finite Amplitude Model  
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