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1. INTRODUCTION

Sound attenuation in rigid ducts with bulk-reacting, sound-absorbent porous
liners or splitters has been fairly extensively studied both in the absence and
presence of mean gas flow in the space(s) between the absorbent layer (see, for
example, references [1-3]). Moreover, the influence of wall motion on sound
propagation in rectangular ducts with flexible walls has been examined {4], in
a study of noise "breakout" from ductwork, and it has also been shown [5] that
structural/acoustic wave combinations exist wherein the energy flow can
concentrate itself predominantly either in the structure or in the fluid in the
duct.

No efforts appear to have been made to determine the effects of wall motion on
sound attenuation processes in flexible-walled lined ducts. In the analysis of
sound attenuation in acoustically lined sheet metal air-moving ductwork or
package silencers, it is of considerable importance to know how wall
flexibility affects both the attenuation process itself and the distribution of
ener?y flow in the structure and in the fluid contained in the duct,
particularly where axial discontinuities ("structural" or "geometrical") exist.

In this paper, some of the effects of wall flexibility on sound attenuation in
ducts having bulk liners are examined. A finite element (FE) structural and
acoustic mode] is described, and experimental results are compared to numerical
data.

2. THEQRY.

2.1 Geometry and governing equations. ‘

The geometry of the problem to be investigated is illustrated in figure la. A
prismatic duct lies along the z axis of a cartesian coordinate system. Its
cross section consists of an airway (region Ry ) and an acoustically absorbent
Yiner (region R,). The wall of the duct is rigid except for a thin elastic
plate adjacent*%o the Yiner (contour C3 in figure 1b). The acoustjcal pressure
in the duct, p (x,t), and the lateral 3isp1acement of the plate, u (s,z,t),
vary harmonically with time so that

p*(x.t)=p'(x)ei0t  and  u'(s,z,t)=u'(s,z)ei0t

The acoustical equation in the duct is then
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vzp'+ k2 p' = 0 , where k ko (real,= ofcy) in the airway, (1)

ks (complex) in the liner .

The time harmonic version of the unsteady plate equation is
gla2/as? + a2fa2¢)2u" - gau'= p', on C3, (2)
where 'g' is the flexural rigidity of the plate and 'g' its mass per unit area.

The pressure and displacement are further coupled through the kinematic
constraint on C3 which requires

(1/p502) ¥p'.n3 = u' on C3, (3)
{py is the a complex density for the liner consistent with the choice of a

complex wavenumber k,). Boundary conditions on the duct perimeter and at the
interface between the airway and liner are:

¥p'.mp =00onCy {rigid wall), (4)
pP'g = p'a on Cg, {continuity of pressure), {5)
and (1/p02)(2p"g-n2] = (1/0a0%)[Zp'a-12] on C3 , (6)

(continuity of particle displacement}.
(note: p', and p'y denote acoustic pressure in Ry and Rgp).

2.2, formulation of the eigenvelue problem.
Solutions for u' and p' are now sought which have the form

p'(x)=p(x,y)eTaZ and u'(s,z)=u(s)e"1oZ, (7)

PLATE STRUCTURAL ELEmMERT

ACOUSTICAL
ELEMENT

AIRWAY

Figure 1. Geometry of the duct and its cross section.
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These represent coupled structural/acoustic modes propagating along the duct
with the same (complex) axia) wavenumber 'a'. Substitution of -expressions (7)
into equations (1) and (2) yields

v2p'+ (k2-o2)p'= 0 in Ry and Ra, (1a)
and g{d3u/ds? - 2.2 ddufds? + (n4-kp4)U) = p, on C3, (2a)
where 'v2' is the 2-D Laplacian (a2/axZ + 22/3y2) and where kp4 = q 8¢/q.

Boundary conditions (3)-(6} are unaltered provided that the superscripts ' are
dropped from the variables 'p' and 'u' and provided that the gradient operator
v is re-interpreted in its two dimensional form as {ap/ax,sp/ay). The above
equations pose a non-lipear, complex eigenvalue problem in 'a'.

2.3 The variational statement.
Equations (la) and (2a) are 'Euler' equations for the functional

Flu.p'o.p'a) = ¥ o 02 fcgg(“ssz + 2a%ug? + (ﬂq'kpq)uz} - upa}ds +

X Inizpo-zpo-(koz-azlpoz}dxdy + %(pofpa)fkizpa-Epa-(kaz-az)paz}dxdy-
(8)

They arise naturally from the variation of 'u' and 'p' respectively. Moreover,
boundary conditions (3),({4), and (6) emerge from the same process as 'natural’
boundary conditions associated with the variation of p, provided that p is not
specified on Cy or C3 and provided also that the class of functions from which
it is drawn explicitly satisfies boundary condition(5) (i.e py=py on Cp}. The
'natural’ boundary conditions associated with the variation o? 'u' then
correspend to clamped or simple supports along the edges of the plate. The
solution of the eigenvalue problem posed by equations (la) and (2a) and by
boundary conditions (3)-(6) therefore reduces to the location of the stationary
values of functional F. This is achieved in an approximate form using a
Rayleigh-Ritz approach with trial functions defined by an FE model for the duct
and the plate.

2.4. The finite elesent model.

Trial functions are formed for 'p' and 'u' by dividing the duct and plate into
discrete elements. In the present analysis, nine noded isoparametric Lagrangian
elements are used for the duct and two noded Hermitian line ‘elements for the
plate (see figure 1b). The nodal values of acoustic pressure, py, pp,....Ppa
say, then define the pressure field in the airway and the liner.” The degrees
of freedom of the structural representaticn are the nodal displacements and
rotations {about the z axis) at each structural node. These are denoted by
dj,dp,...dng- The finite element discretisation may then be represented in
matrix form as,
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p=[N1{x.¥), .. Nps{x,y)I[ P1 ] = NP, and u=[S1(s),.. Sps(s)][ 21 ] =S d,
P2 d2
Pr a

"19,10)

where Ni(x,y) and Sg(s) are the global shape functions of the acoustic and

structural meshes. Substitution of (9) and (10) into expression (8) then
approximates the functional F by an algebraic expression, F'say, where

P=%[ﬂn¢+dTap+ﬂBTd+ﬂcp]=[ﬂmﬁr 5]1

BT ¢
11)
and where
A= o 02 jcgg(sssTsss + 275,78+ (a*-kp*)8TS)}as, {12)
B= po 0l fcgsTn}ds, (13)
A= jﬁo+R§po/p){g(u,Tux + NyTHy  + (22-k2)KTH) }dxdy, (14)

(where p=pa, k=ky in Ry, and p=pq, k=kq in Ry).

In terms of their gependence on 'a', the matricea A, B and C are of the form ;
A=A0+a2 A2 +a" M, B=B0 and € = C0 + o% C2, where AD, A2, ,... €2 are
constant. The stationary values of F' are then obtained by equating its
derivatives, with respect to the components of d and p, to zero. This gives

S S R

which may be converted into a symmetric, linear eigenvalue pFoblem in ‘a2t by
factoring the matrix A4 into over and upper factors L and L' and by
introducing a new vector d'=acL'd., Equation {15) then becomes

[ SR . -

This produces 'na+2(ns}' coupied eigensolutions, The uncoupled structural and
acoustical modes are obtained by removing the coupling matrix BO to give two
independent eigenvalue problems: :
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{a) the uncoupled structural problem ('2{ns)'modes)

[ 2L JEH

(b) the uncoupled acoustical problem {'na' modes)
[ ¢0 +a2 c2]p =0 (18)

2.5 Modal representation of a rigid/flexible transition.

Consider now the sound field in the vicinity of an abrupt tranmsition from a
rigid walled duct, in the region z<0 say, to a flexible walled duct, in the
region z>). The incident sound field in the rigid walled duct is known and the
flexible walled segment is anechoic. The eigenmodes produced from the solution
of equations (16) and (1B) can readily be combined to produce a complete
solution for the sound field on either side of the discontinuity.

Let the eigenvalues, pressure eigenvectors and structural eigenvectors, produced
by the solution of the coupled problem (equation {16)) be denoted by o<;,p;

and d; respectively (i=1,nt where nt=na+2(ns)). The analogous modes for
prgblem (18), that is, for the same duct but with rigid walls, are denoted by
o' and p*j say {j=1,na). In both cases the eigenvalues , aj and a';, are
chugen with“negative complex parts and correspond to 'positive' modes, in the
sense that they attenuate in the positive z direction. The sound field in the
region, z<0, may then be written as a superposition of positively and
negatively propagating modes in the rigid walled duct, that is, the acoustic
pressure p'(x) may be written

na
p'(x) = zlu {ap* p'p exp{-ia’nz)+ ag~ p'y expl+ia’nz)}, (19)
n=

where the incident coefficients, a,*, are known and the reflected coefficients
an~ are to be determined. S$imilarly, the acoustic pressure and structural
displacement in the region, z>0, are given by

t t
p'(x) = g N {by*py exp(-iapz)} and u'(z,s) = g S {by* dp exp(-ieqz),
n=1 n=1 (20)

where the transmission coefficients, by*, are unknown. Acoustic pressure and
normal particle velocity may then be matched across the plane 2=0 . This may be
done using point collocation (since the transverse mesh is identical in both
regions) and produces 2(na) linear equations for the {na + nt) unknown
coefficients (a;~, i=1,..na, and bs* j=1,...nt}. To complete the equations, it
is necessary to specify the way in"which the plate is secured at z=0. In the
present instance, it is clamped and the displacement field given by expression
{25) is constrained so that 'u' and su/sz' are zero at z=). This yields the
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'2(ns)' additional equations required for the determination of the unknown
coefficients, These may then be substituted back into expressions (20) and
{21) to give the sound field in the duct. .

3. MEASUREMENTS

Figure 2 shows the experimental arrangement. A loudspeaker, fed with a
sinusoidal signal or white noise, radiated into a rigid-walled section of
rectangular lined duct, followed by a lined duct section with three rigid walls
and one flexible wall, rigidly clamped along its sides and where it joined the
fully rigid section. At the far end of the duct, a sound-absorbing termination
largely eliminated acoustic reflections, and wedges of structural damping
material attached to the flexible wall reduced structural wave reflections. The
acoustic absorbent was a fully reticulated polyurethane foam 30 mm thick, with
a steady viscous flow resistivity of 6230 SI rayls/m. Its bulk acoustic
properties were measured in separate tests by using an impedance tube, The
flexible wall was of aluminium, 0.54 mm thick and 100 nm wide; the absorbent
was placed next to the flexible wall, with a very small air-gap between the
two. Sound pressure data were taken at a series of axial pressure tapping and
vibrational data were taken along the wall. Because the metal bars used to
clamp the flexible wall had a small degree of transverse curvature to their
notionally flat sides, the wall was actually clamped a small distance from the
corners of the bars, and the effective width of this wall was 107 mm.

4. CONPARISON BETWEEN NUMERICAL AND MEASURED DATA.

Figures 3 and 4 show the real and imaginary parts of the computed axial
wavenumber, as a function of frequency (the imaginary part has been converted
into an attenuation per unit length), for the Teast attenuated modes in the
test duct. Also shown are the exact (see [1]} corresponding vatues for a lined,
but rigid-walled, duct. The (real) axial wavenumber of the first unceupled
structural mode (see [5]) is also shown.

LOUDSPEAKER

FOAM ABSORBENT

RIGID WALLS

200C¢ am
450 ma l
o
i t o~
|'I BT M0 S O D A Y RO N TN AR N
FLEXIBLE ‘\\\‘30 o
S1GnAL \\ ALUNINIUM WALY

STRUCTURAL DAMPING
MATERIAL

Figure 2. Experimental duct.
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Although not shown, the FE values for the uncoupled acoustical and structural
wavenumbers (obtained from the solution of equations (17) and (18)) could not
be distinguished, to the scale of Figures 3 and 4, from their ‘exact’
counterparts.

At all frequencies there is one coupled mode correspending to the least
attenuated rigid-duct wode, but this alternates between modes I, I and ITI.
This role changes from I to Il through the first structural resonance (at 260
Hz), from II to III through the second resonance, and so on. Coupling occurs at
these frequencies between modes which are predominantly 'structural' and those
which are predominantly 'acoustical', and appears to be the mechanism for the
attenuative peak at the first resonance. Its presence is supported by the
experimental data in Figure 5, where the measured attenuation beyond the
rigid/flexible wall transition and values computed from the modal solution of
Section 2.5 are compared. Two sets of 'measured data are shown: those based on
the average slope of the axial sound level, and those measured directly as the
difference between values at the transition and a point 1 m beyond it.

Figure 6 shows the axial wall displacement on the centreline at 300 Hz.
Correspondence between measured and computed values is good. Both clearly
demonstrate the presence of significant modal mixing.

100

100 1

ATTERGATION (dB/H)

AKIAL WAVEMUMBER (REAL PART)
‘ 5

.5000 E Lo 00 1000 5004

FREQUENCY (W2} . FREGUENCY {HI}

Figure 3,4,: axial wavenumber (real part) and axial attenuation, test duct.
— FE soln.,——exact(}ined,rigid) ,~-exact(lst struct.mode).
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Figure 5: Effective attenuation; Figure 6: Wal) displacement;
— FE, o© measured . —FE, 8 measured.
-4 peasured {averaged). )

Comparisons of measured and computed results indicate that the effects of wall
flexibility on sound transmission in bulk lined ducts are accurately modelled
using an FE formulation, and that these effects are significant in the vicinity
of structural resonances. The coupling between 'structural’ and 'acoustical’
modes is then quite strong and produces unexpected results, qarticularly in
regard to attenuation, when compared with the acoustical field in an equivalent
duct with rigid walls. '

The authors wish to acknowledge support from the 5.E.R.C. under research grants
GR/F/53407 and GR/F/56819 and from Sound Attenuators Ltd. of Colchester.
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1. INTRODUCTION

Conical pipes connecting two pipes of constant but differing diameter often form elements of
acoustically excited flow ducts. Normally, excitaton frequencies remain sufficiently low so that
the transverse dimensions of all pipes remain a small fraction, with the lengths of conical pipes a
modest fraction, of the acoustic wavelength. One can then assume that the wavefronts of the
sound propagating in the uniform pipes remains effectively plane, while the wavefront shapes in
the conical pipes will be spherical. It is convenient 10 subdivide such elements into two further
classes. One such may be wreated as sufficiently short that both the hydrodynamic and acoustic
behaviour corresponds closely to that for an abrupt expansion or contraction in area. This case can
then be modelled approximately, but perhaps realistically in practice, by adopting the analytical
methods describing wave propagation across sudden area charges outlined, for example, in
reference [1]. Here appropriate allowance has been included for flow separations at the comers
with the consequent flow and acoustic losses that occur. Normally, flow contractions can be short
without incurring undue losses, but this is not generally true with expansions.

The other class, which forms the subject of this contribution, includes those examples of
expanding flaws where the axial rate of area change is sufficiently small that flow separation is
avoided. (What follows is also applicable to long gently contracting nozzles, which are relatively
less commonly found). With this restriction the flow can be regarded as homentropic and
irrotational so that the relevant and recent theoretical analysis of the acoustic behaviour, presented
in references [1] and [2], is then appropriate. An outline of the discussion given there is repeated
here, with some relevant experimental observations.

1.1 Geometrical features

The geometry concerned is illustrated in figure 1, showing a cone of axial length 1 with taper angle

a connecting a smaller pipe, diameter 2a,, where the mean flow Mach number is M, 10 a larger
one, diameter 2a;. Transfer between the plane wave motion in the pipes and the spherical wave
motion in the cones is assumed to occur within the lens shaped control volume ¥V, shown hatched.

This is bounded by a plane surface of area Spanda spherical cap of area 8. From the geomeny a
= arctan [(a;-ag)] with radial distance from the apex r = a,coseca. Also $p = nr? sinZa, § =
2512 (1-cosa) and V, = (£/3) 13 {1-cos a)? (2+cos ). The maximum limit, implied by the
requirement that the mean flow remains atiached a1 the cone walls, suggests a < 0.1 radian or

thereabouts. With & = 0.1 radian the ratio S5¢/5, = 1.0025, so that both S and Sp will be raken
here, for convenience, as equal to their arithmetic average S; = (S + §¢) /2.

Proc..O.A. Vol 12 Pant 1 (1990)
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In the applications considered here r is of order unity or less in terms of acoustic wavelengths, so
that V, is a relatively small volume with thickness r(1 - cos @) < 0.01 in the same relative terms.
Within each volume V,, mass will be conserved, the associated mass flux being those on the
outward normal directions on §; and 5, and momentum will be similarly conserved. The
fluctuating mass of the fluid within the control volume is involved in both the mass and
momentum balances, in effect providing an end correction at the junction. Within V, the
fluctuating motion associated with wave transfers at the ends of the cone is neither quite plane or
quite spherical. However, a permissible simple but balanced and quite accurate approximation is
to assume that each fluctuating quantity in V, is the arithmetic average of its plane Sp-side and
spherical Sg-side representations. With this approximation, the representative average thickness of
the volume of fluctuating mass associated with the two bounding surfaces Sj, and S, will be

expressed by T, = (1/2) V45
2.1 Wave motion in the cone

With modest values of the mean flow Mach number M, < 0.2, it can be readily demonstrated [2]

that the flow temperature remains constant to better than 0.8%, implying that the speed of sound ¢
in the cone can be assumed a constant ¢, to better than 0.4%. The approximate analytic solution
developed in [2] assumes purely radial flow in the cone so that the mean velocity is proportional to

{ry/r)? and the Mach number at any r, M, = {ro/r)? M,,. The pressure, p, mass density, p, and
particle velocity, u, in the cone are functions of r and time t, while the corresponding variables in
the pipes are functions of the axial position x and time t. One can express all these variables as the
sums of mean and fluctuating quantities, the later having zerc time averages. Thus p {r,t) can be

expressed as F(r) + p'(r.t), and so on for the others, For potential flow, with ¢{(p,ty = ¢ (1) +

&'(r,t) one has u(r,1) = —9 ¢ /or - 9¢'(r,t)/or. As there is only one space co-ordinate involved as
an independent variable, the velocity is irrotational. For simplicity the flow is assumed to be
homentropic.

Conservation of mass can then be expressed by
(1/c3) D/Dt - V29 =0 ity
where ¢ = yp/p, ¥ the ratio of the specific heats, h the enthalpy per unit mass and D/D1 is the

material derivative. With homentropic irrotational flow the expression for conservation of
momenturn can be integrated to give a conservation of energy expression

h + (1/2) (V$)2 - 3¢/01) = hy )

where h,, is a constant reference enthalpy. With an ideal gas where h = c2/(y-1) it is shown in [2)

that with Mach numbers IV/c | less that 0.2, ¢Z can be regarded as a constant in equation (2).
With spherical polar coordinates and purely radial flow, substitution for h from equation (2) into
equation (1} gives ultimately, [2],
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[c2 - (Od/or)?] A24yn? + 2[(c2/r) + (3¢/Or) 9/01] Ig/ar - 92/h2 =0 (3

which must be satisfied by both mean and fluctuating components of the velocity potential &.

For the mean motion, for M, < 0.2, after time averaging (3), it is shown [2] that the resulting
equation describing the mean motion is satisfied to betier than £ 4% at least by the velocity

potential ¢ = -uyr,2/r, which being proportional to 1, satisfies Laplace's equation in I€r<ry.
It is also shown that equation (3) then reduces 1o

€02 92 /A2 + 2[co? /1 - g (ry/r)2 8/01] 3¢'/Ar - 2y/n2 = 0 {4
which is lirear in ¢'(r,t), with coefficients that are only functions of r,

An appropriate compact solution ¢ equation (4) expressed in terms of ¢+ for waves mavelling in
the positive r direction and ¢~ for those travelling in the converse was then found [2] 10 be

&% = (Gg*/r) exp [i (ot - ketr)), ket = (0fcg) (14M)), (Sa)
¢ = (Gg/r) exp [i (w1 - k1)), ks = (a/cg) (1-M)), (5b)

with M, = (1'c,/r)2 M,, which is again accurate to better than 4% with M, < 0.2, Fluctuating
velocities and pressures in the conical pipe can then be found in the normal way from

u' = -3¢'/ar, p'=p (9 + w3 ¢, (6,7)
where p can be assumed constant [2,3] and equal 1o p, and u = u, (ro/r)2.

2.2 Wave mansfer at the cone/pipe junctions

Conservation of mass and momentum in the junction control volume V, respectively, can be
concisely expressed in Cartesian tensor notation (i, j = 1,2,3), as

apy
‘,[ -%;Iav, +5Jpsusass + SI ppupdSy = 0 {8
r § p

d
Jg{ (pujdyy OV, + SI(pSusiusj + Paij) dSg + sl(ppupi upi+ ppajj) dSp=0. (9
T § P
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(Here ;; is the Kronicker delta, equal to unity for i=j and zero for i#j). With the variables wrinten
as sums of mean and fluctuating parts, with the latter assumed small so their squares can be
neglected, each of equations (8) and (9) can be separated into independent time averaged and
fluctuating parts. It can then be shown [3] with the temperature assumed constant within £0.8%
or better are also corresponding constant ¢, throughout the system, it is consistant to assume that
the mean pressure and density are also constant everywhere in the cone. ‘

The fluctuations, being governed by linear equations can conveniently be expressed in term of the
Fourier coefficients of the fluctuating particle velocities and pressures of the component waves.

Thus, with plane waves of frequency ®, (See reference [1]) one can adopt the well established
substitutions

pp' = pp+ +pp = pp*‘ (o) exp i(mt-kp"'x) +pp {o) exp i(mt+k‘p:_;). (10)
where kp* = k/(14M,), k" = k/(1-M;) and k = w/c,. Also pp*.(0) comresponds to the amplitude of
the positively travelling waves at the origin for x. For fluctuating particle velocities, the
corresponding isentropic substitution {1] is . '

Pooli’p = Pp* - Py : an
The comesponding fluctuating quantities in the cone, at frequency , are
ug = ugt +ug = (1) + ik (1-Mp)] ¢+ + [(1r) - ik (1+M)] &g (12)
P's = PoCo LIk - My [ (1/0) + ikcg]) &% + {ik - M, [(1/1) - ikg*]) &5 (13)
Following the discussion concerning the averaged motion in V,, at the end of section 1.1, one

finds for example [ (3p,/3t) dV, in equation (8) becomes simply (1/2) (Ipg/t + dpy/ot) V. -
v

T
and simifarly for the volume integral in (9). Thus the fluctuating part of the mass balance equation
(8) can be written with u = u p = SoMp as o :

(1/2) ioV; (ps'+ pp) = S, (Poug’ + CoMips) - S (potip’ + coMipp) = 0 (14a)

with T, = (1/2) V,/S, and the isentropic substitution p' = p'/cy2, rearranging, collecting terms and
multiplying through by ¢, converts this equation to the more convenient form

(M; +iKTr) p's + pocotts’ = (My -ikTr) p'p + PoCoup. (14)

Similarly, the fluctuating pan of the momentum balance (9) can be expressed as
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(1 + M2 + kMT,) pg' + pyco (2M; + ikTp) ug = (1 + M2 kM, Ty} Py, + PoCo (2M-ikT,) l?'.
15)

when p' and u' in equations (14) and (15) are expressed via equations (10) to (13), in 1erms of ¥
and p,*, then given either one pair they can be solved to determine the other. To avoid tedious
algebra, equation (15) can be simplified at the outset [3] be neglecting the terms M2 and k M, T,
compared with unity and approximated by '

Ps'+ PoCo (M, + KT ug' = g + pecy (2M; - ikT)) U, (153)

With similar simplifications, use of equations (10} 1o (13) with M,2 terms neglected) in equations
(14) and (15a) gives, after again neglecting terms which arise in M2 and kM, T, in comparison
with unity, for the approximate mass balance,

PoCo ({(1/r) - szr]' (¢5+ + o) + ik (¢s+ - q’s-)] = (Mr - ikTr) (pp+ + Pp') + (Pp+' Pp')- (16)
and for the corresponding momentum balance
PoCo [{(1/r) (M + ikT) + ik} (¢g* + ¢5) + ik(M, +ikT;) (b5* ¢ )]

= (pp* +pp) + (M, - ikT)) {op* - pp)- (17)

Wave transfers across the junctions between pipe and cone or cone and pipe can be calculated by
solving equations (16) and (17). Wave transfer along the cone can be caiculated from equations
(5a) and (5b). This completes the theoretical analysis. It now remains to compare the predictions
with observations,

3.1 Experimental procedures

A general model of an acoustic system is illustrated in figure (2a). Here, the element of interest
(eg the cone) is represented by its scattering matrix [T], see ref [1], and lies berween its source of
excitation S and an acoustic load with impedance Z. The four complex wave amplitudes p,* and
p2* yield four ratios which describe its in-situ acoustic characteristics. these are the two
transmission coefficients, defined by

Ti = py*/pyt, Tr=py/py (18), (19
with reflexion coefficients
= priprt, t3 = pr/pgt (20), (21)
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One notes that any 3 of the 4 serve to define all 4. Furthermore, if Z is known, the ry = (Z-pc) /
(Z+pc), so thatany two others then suffice. In such cases, it is sufficient to measure, or calculate
say, Ti and r;.

The pair of wave comnponent amplitudes pt and hence ry and ry can be measured independently by
the now well known two transducer method described, for example, in reference [4) and
employed successfully be the author and his associates at Southampton for the past 15 years or so.
However sirnilar estimates of Ti an Tr require a four ransducer method, as described in references
[5, 6] with the experimenial arrangement illustrated in figure (2b). Assuming plane wave
propagation and uniform mean flow, each of the complex amplitudes of the monochromatic
components Pn of the observed signals at stations 1, 2, 3,4 is the sum of corresponding
component wave contributions P* and Py~ Thus Py = P *{(0) exp (-iff*x},) + Py-(0) exp (iBx)),
where B? is the comresponding complex wave number [4] accounting both for mean flow and
wave attenuation, while P12(0) are the component wave amplitudes at the comrespoding origin for
x, With white noise excitation simultaneous records of the four pressures can be expressed in
matrix form: P = K.Po, where the vector P contains their Fourier transforms, Po contains the

complex wave component amplitudes PX(0) and the matrix K is composed of the corresponding
exponentiat terms. . . i

Assuming the random pressure fietd in the system is stationary and ergodic, the spectral density
functions between two signals at stations m and n can be expressed as Smn(f). A spectral matrix
which contains all the auto and cross-spectral densities Smn can then be buile

S¢f) = (P* (). PT (0} = K*. S(0). KT, 22

where the operator [} represents an ensemble average an the star denotes the conjugate. The
matrix S{o) = {Py* (). P, T (f) } of the spectral densities of the component waves can be
estimated by inverting (22),

Stoy=K*1.8p. K-T
The reflexion and transmission coefficients are estimated as transfer functions of a single input

linear system, with the less noisy upstream signals chosen for the inputs. , Further details can be
fond in references [5, 6].

3.2 Comparison of measurements with predictions

Observations of Ti and 1y were made with a conical diffuser 0.24m long where 2a, = 38mm and

2a; = 71 mm, giving & ~ 0.07 radian, with mean flow Mach numbers ranging from zero 10 0.2,
The tailpipe of diameter 2a;, attached to the cone outlet, was 1.0m long, its acoustic impedance
representing the load Z in figure (2a). The signal was excited with white noise at a level well
above background noise over the frequency range of imerest and the spectral density functions
were calculated from signal records 10 sec along with an averaging bandwidth of 10 Hz yielding
estimates with some 300 staristical degrees of freedom.
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Preliminary results of measurements of Ti and ry indicate that a close agreement exists between
them and predictions calculated with the analytical relations set out in section 2. More
comprehensive comparisons will be reported in due course.
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A MODEL OF FINITE AMPLITUDE SOUND PROPAGATION IN HORNS
K R Holland & CL Morfey
ISVR University of Southamplion

1. INTRODUCTION

The high electro-acoustic efficiency of horn/compression driver loudspeaker systems leads 1o
their use for the production of high sound pressure levels. In order 10 produce high levels in
the far field, very large acoustic pressures must be present at the small throat of the horn and
especially in the phase plugs of the drivers. A high quality compression driver typically has a
sensitivity of 143dB SPL into a plane wave tube for IW of electrical power input. The same
driver may have a thermally limited maximum power capability of 100W leading (assuming
linearity) lo acoustic pressures in excess of 160dB SPL at the throat of 2 homn. When the

pically 20:1 compression ratio for the driver is considered, acoustic pressures in excess of
180dB SPL are possible at the diaphragm. It is clear from the above maximum levels that
linear acoustic todelling of the horn and driver will not be accurate at high drive levels.

Of the many sources of sysiem nonlinearity possible at these levels, three are expected to be
predominant. One involves the electro-mecharical limitations of the driver, including thermal
power compression effects, magnet/gap problems etc.  The second source of nonlinearity
involves the volumetric changes in the cavity between the diaphragm and the phase plug, and
the third, with which this model is concerned, involves propagation nonlinearity leading 1o the
possibility of the production of shock waves in horns and drivers. Whereas the fist nonlinear
mechanism is common to all electro-magnetic loudspeakers, the second and third mechanisms
are peculiar to homns in that they are acoustic nonlinearities.

2. DESCRIPTION OF MODEL

If it could safely be assumed that the sound field within homns and that radiaicd to the far {icld
consisted of a single progressive wave from throat out Lo infinity, the calculation of the sound
field. 1o reasonable accuracy, for finite amplitudes would not be 100 difficult. However. all
practically realisable homs suffer reflections from the mouth termination and often from
discontinuitics within the hom flare. This being the case, it is impossible 1o follow the
propagation of a wave from the throat 1o the mouth and back again as is possible for
infinitesimal amplitude (linear) modelling because linear superposition does not apply and the
forward and backward waves will interact in an unknown manner. It is therefore necessary lo
_model the system “backwards” in time from the far field, where lineurity is assumed, 1o the
throat. In the model described below, nonlinear propagation has been modelled in this manner
initially by investigating what input waveform woulg be necessary to produce a sinusvidal
output in the far field (a form of pre-distortion).

In order to mode] horns of arbitrary shape il is necessary to split the horn into short expone ntial
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elements. However, because the interaction berween the forward and backward waves is likely
to vary within the space of one wavelength, the model may require many elements of length
nat greater than a fracivn of a wavelengih of the highest frequency of interest (possibly
including harmonics).

The speed cf propagation of a sound wave at a point is dependent upon the local pressure and
particle veloaity al that point. Tn a free, progressive wave this results in the positive half cycle
of a waveform propagating fasier than the ncgative half cycle giving rise 10 steepening of
sinusoids and eventual shock formation. Under most conditions at moderate levels, dissipative
mechanisms in the sound medium and the large propagation distances involved prevent this
frum being significant, and Lineanity can safely be assumed. The sitwaion within horns at high
levels is not this simple. The characlenistic impedance of a wave within a horn is usually
complex due 10 phase dispersion and reflections, so the equations used for the calculation of
waveform steepening in free, progressive waves cannol be used. Instead a more universal
eyuation for the local propagauon speed {e(1)) 1s used:

il
o) = co gP_o;p(U g 271 u{t) (1}

o

where ¢q is the linear assumed sound speed for the particular static pressure {P+), p(1) and uf1)
are the instantancous total (forward & backward waves) acoustic pressure and particle velovity
respectively, ¥ is the ratio of the specific heats of the sound medium and 2 refers to calculation
for forward and backward waves respectively. " The “time advance” (T} of a portion of a
waveform compared to its lincar propagation can then be calculated:

T4) = :galﬂ . éi . | @

where -/ is the disunce propagated. The concept of a negarive propagation distance is
introduced to avoid the complications involved with negative time and hence negative
velocities. These propagation speed calculations can only be carried out in the time domain,
where calculation of the dispersive and reflective propertics of a horn are difficult. To
overcome this problem, calculations are carried out both in the lime domain and in the
frequency domain and linked via 256 point Fast Fourier Transforms. The following is a
description of the model, a flow diagram 1s shown in fig.1.

A stanting waveform (po{1)) is defined as the desired output, along with the coordinates of the
hom and the output impedance (Za(f)). The output pressure waveform is transformed into the
frequency demain (p(f)) and a closed form linear sclution of Webster's Horn Equation {1], uvses
the horn coordinates and the oulput impedunce 10 separate out the forward and backward
pressures and panicie velocities (pa(f).ps(f),ua{f) & uB(f) resp.) and propagate them back 1o the
end of the element. The twe pressures are transformed into the time domain and added (pr(t))
as are the particle velocities (ur(1)). These total waveforms are used to calculate the
propagation speeds (catt) & ca(1)) for every tile point using equation (1) which along with the
hom coordinates (10 obiain the element lengths) are used to calculate the time advances for
zvery time point. These time advances are checked at this point to ensure that nene of the time
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poinis “overlap” indicating shock generation. If shocks are detected, the programme stops and
announces the presence -:)tg a shock (the model cannot as yet handle shock propagation). Each
of the four separaie 1tme waveforms {(pa().pe(t}ua(l) & us(1)} are distonied using the time
advances and resampled to maintain linear time spacing for FFT calculations. The two
distorted pressure waveforms are then added and transformed back into the frequency domain
and fed back to the start of the next element (p(f}}. The particle velocity waveforms are also
added and transformed and used in conjunction with the total pressure to calculate the
impedance for the new element (Z{f)). The process is repeated for each element in wum vntil
the throat of the horn is reached or a shock is generated. The end waveform can then he
considered to be that input necessary to obtain the starting waveform (po(1)) as an output.

The model as described appeared to work well but when tested with an inereasing number of
clements, it was found that more elements were required than expected before the result
converged. If enough elements were not wysed, the modal tended to overestimate the
nonlineanty compared 10 the result for a large number of elements. This problem was traced to
the fact that the total pressure and particle velocity values that were used for the speed of
propagation calculations were those that occured at the end (throat) of each element and as
such the calculations were always the “worsl case™ approximations to the actual nonlinearity.
To overcome this problem a weighting function (shown dotied) was introduced inlo the
calculations assuming that. for a given forward or backward wave, the product of the pressure
and the square root of the area remained constant throughout an element. Because of the
exponential shape of each element, the integral of this function over an element appears as a
multiplying constant in both the pressure and particle velocity terms. The only other
assumption inherent in this is that the “distoning effect” varies linearly with pressure and
particle velocity over an element, this is reasonable for a short element. After this
modification, convergence was seen 1o be very much better and reliable results could be
obtained with fewer elemens.

Another problem became apparent only when 2 large number of elements were used (n>20)
and the starting waveform was a sinusoid. It is reasonable to assume that any distortion should
appear only as harmonics of the continuous starting sinusoid, however when such a stanting
waveform was used, afier propagation through a large number of elements, spurious
frequencies were observed on the spectra. This was traced to the lack of any signal at those-
frequencies allowing the errors {noise) in the computations to appear as very large numbers in
the calculation of impedance at those frquencies (a small aumber divided by a very small
number giving a large number) which afler a large number of elements allowed significant
values for pressure to appear. A first attempt to overcome this problem was to “pad” the
starting waveform with a small delta function to give some signal at all frequencies. This
resulted in the gross amplification at low frequencies below the cut-off of the horn (where large
amounts of “inpm" were necessary at the throat 10 appear as small outputs on the starting
waveform) making the problem worse. Finally it was decided that for sinusoidal starting
waveforms, only the harmonics would be calculated in the frequency domain, all cther
frequencies being held to zero. This technique appears to work well, For transient staning
waveforms the problem does not occur.

Fig. 2 shows a sinusoidal starting waveform at the moutb of a typical midrange horn. Figs. 3, 4

& 5 show the throat waveform results for three different frequency starting waveforms. The
starting pressure and normalised impedance are 140dB and 1 respectively at the horn mouth.
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3. PROPOSED FUTURE DEVELOPEMENT

Although within the hom itself boundary absorption and dispersion effects may not
significamly effect results, if the model is to extend back 10 the diaphragm through the phase
plug where dimensions can be of the order of fractions of a millimeter, these effects must be
included. 11 is proposed to extend the model to include these effects, ajong with flow resistive
and turbulent phenomena. 1f this can be achieved, the model should prove a very powerful tool
in the analysis of finile amplitude standing wave fields in waveguides. The absolute accuracy
of the medel is Jifficult, if not impossible to check because of the many sources of noplinearity
in the chain. This problem apart, it may be possible to drive a horn with the output waveform
from the model using an extremely linear driver and see if the output becomes sinusoidal as
level is increased. At worst, calculated values for harmonic distortion could be compared 10
measurements. Tests of this kind as well as more general harmonic distortion measurements
are planned.

4. REFERENCES

1] A G WEBSTER. "Acaustical Impedance and the Theory of Horns and of the Phonograph”,
Proc. Natl. Acad. Sci. (U.S.) 5, pp 275-282, (1919).
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Fig.1 Flow Chart for Finite Amplitude Horn Model.
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! One Parameter Finite Amplitude Model

Mouth Waveform
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Fig. 2 600 Hz Mowth Sarting Waveform and Spectrum {model inpu).
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Fig. 3 600 H:z Throat Waveform and Spectrum (model output).
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One Parameter Finite Amplitude Model
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Fig.4 2000 Hz Throat Waveform and Spectrum (model output).
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Fig.5 6000 H: Th‘roar Waveform and Spectrum (model output).
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