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Aerodynamic sound generationin airmoving ductwork is an important aspect
of the acoustics of building services. In ducts without internal acoustic -
linings. a knowledge of the aerodynamic noise source characteristics would
enable the sound fieldin the duct to be found if the duct walla could be
assumed rigid (see Davies and Ffowcs Williams [1] and Nelson and Horfey [2]. for
example). In the case of acoustically lined ducts or package silencers, however,
the situation is complicated by the fact that the sound absorbent is usually in
the form of continuous layers of s Porous material. placed parallel to the
airflow, and these do not present a locally reacting impedance surface to the
sound field in the duct.‘

In this case, care must be taken in the use of an eigenfunction expansion
for the sound field in the duct. The eigenfuotions are not orthogonal. in the
usual sense. on the duct cross-section, and this means that the customary method
of finding the sound fieldradiated by a point source or a source distribution
in the air flow passage by matching the eigenfunction series to the source via
the inhomogeneous wave equation has to be modified. An associated problem lies _
in the completeness of the eigenfunctions, which is not straightforward to prove -
in the present case. If the eigenfunction series is not complete, then it
cannot, strictly speaking, be used to represent the sound field.

Concern about the completeness of eigenfunctions is, perhaps. a minor issue
because all evidence indicates that these eigenfunctions do form a complete set.

Nilsson and Brander [3]. for example, who examined sound transmission in a
circular flow duct with abulk-reacting liner, found that their results
demonstrated completeness. thoush this was not rigorously proved.

In the present study, the case of sound generation in a duct with a
hulk-reacting liner and containing negligible mean fluid flow is analysed; the
acoustic absorbent is seemed to behave like an equivalent fluid. Numerical
calculations are presented for a two-dimensional geometry; the two-dimensional
case contains all the essential elements of the three-dimensional problem and is
thus adequate to demonstrate the phenomena involved. In the specific
two-dimensional example studied. a dipole source is chosen, largely because this
would ordinarily be the predominant source type in a practical situation. Some
conclusions of general interest may be drawn from the results.

Figure 1 shows the geometry of a uniform lined duct with arbitrary
cross-section. having a point source at(has), y being a position vector on
the cross-section of the duct.
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Hod-s1 humth of the Gould Field. an! the Rim—Ignatius

It is assumed here thst there is no mean gas flow in the "six-aw" R1. and

thst the porous sound-absoer medium in R: behsves like an equivalent fluid.

Then. for s harmonic time-dependence, the Helmholtz equation in R1. and its

equivalent in R2. apply: '

(v: + Imp : o in R1; (v2 + k3)» = o in R2, (1”)

where p = acoustic pressure. k = w/c. k. =U/c.. Q = radian frequency. c = sound

speed. c. = (complex) effective sound speed in the porous medium. We take a

model solution to eqs. (1s.h) for (say) positive travelling nodes:

. (I) (I)

p(x.y;)t) = aw n“ Anxlrnum-mnx. qr. = (NI/n . Ya )., (2am
Ud-

where qr” are thenodsl eigenfunctions in R1 and R2. An is a model coefficient

and Innis the axial wsvenumber. The boundary conditions are:

re,‘ m (a) m A‘ (:)A
Vfl-m = 0 on 02; N15: NY» on Cu fivngu : fVfidn on Ci. (3s.b.c)

where 31 and a: are the outward unit nomsls to R1 and R2 and f ,fitsre the gas

density in R1 and the (complex) effective gas density in Rs.

Scott [4] was the first to analyse sound pmpasation in s two—dimensional

duct with a bulk liner: the geometry is shown in Figure 2. Scott's snslysis
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Figure 2'. A Wind limd duct
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yields the eigenfunctions
(I) (1)

\IJ': cos Ky; NY: cosKh coslc.y'/cosK.a, (4s.b)

where y': a+h-y. K = (ha—kzzfl/Z,’ K. = (kaz-k‘zfi/z; subscripts "n" on? . It.

K. and k. have been omitted 'for brevity. Scott‘s eigen—equation is

Hug—kg tan slug-k3 + [whiz-k; ten h kZ—k‘z = o. (5)

Bee. (4a.b) and (5) apply in the present two-dimensional analysis. The
eigen-equation was solved in the following way. The porous medium was assumed to

consist of a fibrous material such asglass fibre. and to be homogeneous and
isotropic. The empirical fomulae of Delany and Bezley [5] are thus applicable,

and in these the real and imaginary parts of the propagation coefficient and the
characteristic impedance are expressed in tents of eight coefficients. If these

are all put equal to zero, then the porous material has the properties of the

fluid contained in its pores and is non-dissipative. The eigen—equation was
first solved for the hard-wall duct case (for which km = (kz—[n‘IT/(vhnZP/z)
and than the sight coefficients were all put equal to a small. fixed proportion

of their actual values. The hard—wall wavenumbera were used as initial values in
a Newton-Raphael: iterative solution to sq. (5). and a new set of wavenumbere
generated. The coefficients were increased again and the new wevenumhers used as

initial values in the iterative solution to eq. (5). This process was repeated

until the coefficients took on their actual values. Then the last set of
iterated waveumhers taken to be the required set of he values.

Ortbomality Propertim and (It-plateaus of Bianfunctiona

If eqs. (2a,b) are substituted into (1a.h). we have

tn) (2)
(vfi my" = o. (Vf+ x3)?“ = 0. (am)

where V? is the two-dimensional Laplacisn operator on the duct cross-section.

Eq. (6a) is multiplied by \I/‘Jl‘snd (6b) by v.53), then these equations are
integrated over R1 and R2 respectively. Green‘s theorem is employed. and the

boundary conditions (Se-c) applied. Appropriate manipulation of the resulting
equations yields an orthogonality property in weighted space:

(I) mén

‘U—RI JR. + JR: } :gl/anm ’ (7)

' where R = R1 + Rn. Equation (7) is not the more usual orthogonality relationship
in which firm?“ would be integrated over R, but contains the weighting
factor 3/?“ in R2.

To date, completeness of the eigenfunctions has not been proved
analytically. but mmsricsl demonstrations have beencarried out in the
two-dimensional case. Suppose we wish to represent a 6-function pressure
distribution by asum of eigenfunctions:

6w - m) = Aaiynty). (as)
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It may readily be shown that
(n

A. = «Yum/Adana) (8b)

it 09151:. whereILn 1: found from eq. (7).

 

lien 3. Syntheeie of a S-fimctim by a finite Bl- of BMW

Pisa-ea 3(a,b) show the right-hand aide of eq. (Ba). summed to N tense. with

[1:20 and N=35. for a duct with a+h:0.l m. 371:0.04 m. frequencFBOO Hz. and for a

steady flail resistivity of the absorbent, 0' =104 SI rayl/m. Convergence is

clearly indicated as N ie increaeed. The area under the main peak amoachea

unity as N-vw and the peak value approachee =9 . If an infinite sum of modes can

accurately reproduce a S-funotion, then any other function £(y1) can also be

represented by the some eigenfimctioi: aoh ’
Mh m

flyx) = ij—ymww = [mam] t'xyn(n)/J\..1J\yn(v)r(y)dy (9)
O a

(if 091.01). Then the set of eigenfunctions mt be complete. If y: liee within

the absorbent layer, similar argumente hold. but a weighting factor of fig;

appeare in equation (9).

ml

Sudeemerationinnumdmct

Consider aound generation by e monopole source located at (b.70) in the

airway of an infinite lined duct (see Figure 1). The inhomogeneoua wave equation

in R1 ie

(V2 + k2)? = day15(x-xa)6(y-Vo)5(z-zo). (10)
. A A

where wee” ie the aource volume velocity and Fawn. We may take solutions

(2a,b) to the homogeneous equations (ia.b) and match them to the source via eq. I

(10) (eee Ominse'ml). This mat be done separately in R; and R2. The modal

solutions are inserted into the wave equations and then these are integrated
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over a volume enclosing the source point. A weighting factor of fly. is
introduced. the weighted orthogonality property (7) is employed and, after

appropriate manipulation it is found that

(r)
p = (emvaQ/zm _|['Ymonynm-unlx-wnoun]. (11)

where .IL. is found, a prior-1. from eq. (7). We now congide; t nearby,
oppositely phased, monopoles. separated by distance hilfidlw .. This is a

dipole. equivalent to a point force of amplitude

Pa. = iwyliQ (12)

if the source spacing is sufficiently mall. whereyliQ is the dipole moment and

i=x.y or z. The to 1 sound field from this dipole may readily be shown to be

(I)
p = (em/2n)"3|EIII‘n(Yo)‘Yn(7)e'*:;nh'lel x (I)

[SE(X‘X¢°)F:“Yn(’°)k-a - myagrmyh- iFsaYn/ley‘l/kmhn}. (13)

M dipoles may, of course. be combined to fan: a point quadrupole. The two—

dimensional equivalent of eq. (13) is readily found by replacing R by a+h,
discarding the third term in brackets. and putting Fa equal to force per unit

width of duct.

513M101:

In many cases, aerodynamic noise is generated at frequencies where only the
fundamental acoustic mode can propagate in the equivalent rigid-walled duct. If
a dipole source consisting of a flow obstacle(perhaps a strut) is placed in a
hard-walled duct. then the fluctuating lift force would not radiate any sound
energy einco'hlrnlay anda'Yn/Dz are both zero. Only the fluctuating drag would
generate sound. If, however, a lining were applied. then these transverse
derivatives would generally be non-zero even for the fundamental mode. and the
lift force could couple to the sound field and radiate energy.

A rather strange phenomenon was noted, concerning some of the higher

order nodes in the two-dimensional case. At sufficiently hid: frequencies, where

these modes are strongly “talented. a "cut-off" effect is observed, wherein the
real part of k. (for a positive propagating mode) goes from a positive value,
throud: zero, and then takes on a small negative value. as the frequency is
lowered. It would appear at first sight that the direction of museum: is
reversed because of this sign change, though the imaginary part of kn is still
negative, consistent with energy decay in the direction of propagation. Closer

examination reveals, however, that there is a mall power flow in the negative

direction in the airway, but a positive power flow in the liner, that outweighs

the negative energy flow in the airway. Thus the net power flow is, in fact.
still positive. in loop“! with positive propagation. It is not at present clear
whether this phenomenon is of any practical simificsnee.
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Suppose that. in a two—dimensional duct. a circular cylinder is located at

(0.y°) in the airway and that a law-speed airflow passes along the duct, with a

velocity that has negligible effects on sound propagation. and no significant

convective effect on sound generation.

Keefe [7] and Garrard [8] measured the fluctuating lift and drag forces on

cylinders in a cross-flow. We may take Keefe's data as being - possibly -

preferable because the forces were measured directly rather than being inferred

from perimetral pressure measurements, as they were in Gerrard's work.

We assume an airflow speed of 15 We and a cylinder diameter of 14.25 m

which, according to Keefe's data. would give an essentially sinusoidal lift

force at 200 Hz and a drag force at 400 Hz. The amplitudes of these forces are

Fy=i.09 We and F.=0.122 N/n respectively. Other data are: 6:10000 Sl rayl/m. a:

0.03 n. h=0.07 In, y.=0.05 n. In the calculations, the slmation in eq. (13) was

truncated at 20 terms.

[WI/A
/ I

Figuratlearfifldssundmcantm-softbflmdipole

 

Figures 4(a.b) show nearfield contours (for 190) of sound pressure

amplitude in Pa for the sound fields radiated by the lift and drag forces

respectively. if the cylinder is regarded as being acoustically compact. In

Figure 4(a) H8 see that. close to the source. there is the characteristic dipole

"figure of eidit" pattern aligned across the duct axis. though this is distorted

by the presence of the liner and. of course. also by the duct walls. The

refractive effects of the liner on the sound field are clear. The drag dipole in

Figure 40:) displays a dipole pattern close to the source. hut (as expected)

this is aligned parallel to the duct axis. The effects of the liner, are again

noted.

In Figure 5, the axial variation in sound pressure level along the Hall at

y=0 is plotted. both for the lift and drag forces. He immediately note that the

near field is quite extensive. reaching to about 0.2 In from the source in the

case of the sound field from the lift. This is understandable since the lift

force excites the n=2 mode much more 'atrongly than the 11:1 (fundamental) mode.
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but the n=2 node decays moh more rapidly. For 100.2 u. only the n=l node

carries significant energy. The near field of the drag dipole extends lees far.

only to about 0.1 In. and this is because the 21:1 node is emited more stroneg

than the n=2 node. and dams less quickly. The amplitude of the 11:3 mode equals

that of the n=l node in the source plane. but decays very muchmore rapidly. For

90.1 n. the flmdanental node carries virtually all the power.

Althougi the sound level from the drag dipole is slightly higher than that

from the lift near to the source. the former falls off more rapidly than the

latter (because of the greater decay rate of the 11:]. made at the higher

frequency), and after several 'netrea, the 200 Hz tone from the lift dipole would

dominate the sound field. For comparison, the ecund level from the same drag

force in an unlined duct of width 0.1 m is shown. This is similar in magnitude

to that in the unlined duct but does not. of course. decay with distance. The

lift force generates no sound energy in the unlined duct.

en mar. MIMIC-S

The above sumle hse demonetrated that an acoustic lining in a duct can

cause the lift dipole exerted by e flan obstacle on the sumunding fluid to

couple to the sound field at low frequencies. whereae it would not do so in an

untreated dict. Since the fluctuating lift is ordinarily greater than the drag,

this could he a significant effect in practical circmstencee.

Consider for example the situation in which a flow obstacle in a duct

(perhaps an internal bracing strut. or turning vanes at a bend) generates a

level of aerodynamic noise such that an acoustic lining must be applied to

attenuate the noise. If the linina is placed along the duct wall in the same-

plane ae the flow obstacle. then the situation could he made HOMO. rather than

better. by the lift force being able to radiate sound energy into the duct. The

lining should be placed some distance frm the source to guarantee noise

reduction. v
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A theoretical treatment of sound generation in a duct having a hint-reacting

lining, but containing negligible mean flow. has been described. If flow were

taken into account. the weighted orthogonality properties of the eigenfunctions

would be lost because one of the boundary conditions would become eigenvalue-

dependent. The problem would then became less easily manageable.

In the case of air—conditioning ducts. the neglect of mean flow would

normally be unimportant.

Further investigation of practical aerodynamic noise sources in lined ducts

would be of value. The inclusion of the effects of a perforated facing eheet,

used to retain the absorbent, in the model would also be desirable.

Am

The author is indebted to Professor G. Poets. of the Applied Mathematics

Department at Hull University. for helpful comments concerning the orthogonality

of eigenfunction.
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