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A distributed parameter model of a straight uniform shaft rotating at constant angular velocity is 
analytically investigated including the effects of transverse shear, rotatory inertia, gyroscopic 
moments and considering the additional contribution of combined end thrust and twisting mo-
ment. The equations of motion are derived by applying Hamilton’s principle according to the 
Timoshenko beam theory, and cast in dimensionless form to highlight the influence of the main 
governing parameters (slenderness ratio, angular velocity, applied external end thrust and twi-
sting moment) on natural frequencies and critical speeds of the rotor. The results of this study 
constitute the basis for further developments, including comparison with finite element models 
and rotor stability analysis under combined loads. 
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1. Introduction 

The general increasing trend towards high speed rotating equipment in conjunction with higher 
power density encourages further insights into the understanding of the dynamic behaviour of 
torque–transmitting flexible rotors. In this research field the use of finite element models is nowa-
days widespread, however distributed parameter formulations still remain of some interest, at least 
for analytical investigations and validation purposes. 

Continuous models of rotating shafts have been studied by several researchers who have dealt 
with many important aspects, highlighting the effects of transverse shear, rotatory inertia, gyrosco-
pic moments and considering the additional contribution of axial end thrust and twisting moment.  

The gyroscopic effects were studied considering rotating Timoshenko beams. The equations of 
motion for symmetric and asymmetric rotors, without the contribution of axial loads, were derived 
by Dimentberg [1] adopting the Newtonian formulation and later by Raffa and Vatta [2] with La-
grangian formulation via Hamilton’s principle. 

Early investigations about the effects of axial end thrust and twisting moment of constant magni-
tude acting simultaneously on a uniform shaft can be found in the works of Greenhill [3] and 
Southwell and Gough [4], who first considered the influence of these loads on critical speeds.  

More recently, the effects of an axial end twisting moment alone on the flexural behaviour of a 
rotating slender shaft was studied according to the Euler–Bernoulli beam model by Colomb and 
Rosemberg [5], and according to the Timoshenko beam model by Eshleman and Eubanks [6], who 
focused their analysis on critical speeds without considering natural frequencies. They found that 
the Euler–Bernoulli model is inaccurate in predicting the critical speeds, and that the latter always 
decrease with external axial torque. Following the results by Eshleman and Eubanks, the topic was 
then again considered, among others, by Lee [7].  

The equations of motion of a rotating Timoshenko beam subjected to axial end thrust were de-
rived with Lagrangian formulation by Choi et al. [8]. An analysis of the effects of combined exter-
nal axial end thrust and twisting moment was proposed by Willems and Holzer [9] and later by Du-
bigeon and Michon [10], who adopted the Timoshenko beam model, casting doubts on some results 
obtained by Eshleman and Eubanks. 

In the present study some further insights are proposed in the analysis of a distributed parameter 
model of a high–speed, power transmitting flexible rotor. A homogeneous uniform Timoshenko 
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straight beam with circular section is considered, rotating with constant angular speed about its lon-
gitudinal axis on isotropic supports, and subjected simultaneously to constant end thrust and twist-
ing moment. The equations of motion are derived using a variational formulation, and cast in non-
dimensional form to facilitate the analysis of the effects of each governing parameter [11].  

A study of the influence of slenderness ratio, angular speed, applied axial end thrust, applied axi-
al end twisting moment and of their interactions on natural frequencies and critical speeds is con-
ducted to determine their relative importance. 

2. Equations of motion and solution method 

The equations of motion are derived in Lagrangian formulation adopting the small strain assu-
mption [8], and decoupled using complex variables. The general integral is sought by separation of 
variables, via modal analysis, yielding eigenfrequencies, closed–form expressions for the eigen-
functions, and critical speeds. 

2.1 Model description and nomenclature 
A homogeneous uniform Timoshenko straight beam with circular section is considered, rotating 

at constant angular speed about its longitudinal axis and simultaneously subjected to axial end thrust 
and twisting moment. The model is characterized by the following parameters:                          
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The external loads N (positive if tensile) and T (positive if counterclockwise) are assumed con-
stant with respect to time. Isotropic supports are considered, making the whole model axisymmetric. 
Hence it can be represented in a non–rotating coordinate system as shown in Fig. 1. Additional no-
menclature includes: 

displacements in the , ,  directions [m]                w complex displacement [m]                

angular displacements about the , ,  axes [rad] θ complex angular displace

i

i
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   J J J J Jx y z z y

u,v,w x y z v w

, , x y z ment [rad]
 

In next sections a simplified notation for partial derivatives is adopted, dots denoting differentia-
tion with respect to time and roman numbers denoting differentiation with respect to x. 

 
 

 

Figure 1: Schematic of the model. 
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2.2 Lagrangian formulation of the equations of motion 
The linear equations of motion of the loaded rotating shaft are obtained by applying Hamilton’s 

principle to the Lagrangian density function , written associating a work density to the external 
loads, which are not derivable from a potential: 

                                                                                                                                        (1) 

where ,  and  denote the kinetic energy density, the potential energy density and the work den-
sity, respectively. Referring to the nomenclature introduced in Section 2.1, the kinetic energy densi-
ty takes the form [2][8]: 

                                    2 2 2 2 2 21
( ) ( ) 2 2 ( )

2 y z z y y zA J J J         
    r J J w w J J J J u v w                         (2) 

while the potential energy density reads [2][8][12]: 

                         I 2 I 2 I 2 I 2 I 2 I 21
( ) ( ) ( ) ( ) ( ) 2 ( )

2 y z y z xEJ GA EA JG              J J k J J J w v u                (3) 

The inclusion of external loads N and T in the Timoshenko beam model is debated in the literature, 
leading to different forms of the equations of motion [6][8][10][12]. Here the following expression 
of the work density is adopted: 

              I I I 2 I 2 I 2 I 21
( ) ( ) ( ) ( ) ( ) [ ( ) ( )][ ]

2 y z y z z y xT N l N T              J J J J J J d d J v v w w x x u      (4) 

where d(⋅) represents the Dirac distribution, and the contribution of N to flexural vibrations is given 
accordingly with [8], ensuring consistency with the Timoshenko beam model. Introducing Eqs. (1) 
to (4) in Lagrange’s equations for a continuous one–dimensional problem: 
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yields the six equations of motion in the form: 
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The first and fourth of Eqs. (6) are decoupled, representing the well known x–direction transla-
tional and rotational dynamic equilibrium equations respectively. 

Introducing the complex displacements w and , the four equilibrium equations describing the 
flexural behaviour in Eqs. (6) can be decoupled into two fourth–order partial derivative equations 
with complex coefficients: 

    IV II III I II II IIw w w w w w w w 2 w w 0, 1
N

EJ iT N A J i J
G G G G GA

                         
       

      r r r r
y r y r r w y

k k k k k
  (7) 

The equation for the complex angular displacement  is exactly the same, after substituting w with 
. In Eq. (7) complex coefficients identify the terms responsible for coupling the flexural behaviour 
in the x–y and x–z planes. Notice that Eq. (7) would retain the same form also in the case of an ex-
ternal twisting moment T applied tangentially at the ends of the shaft (i.e. a follower torque) [7]. It 
generalizes the expression given in [6] (effect of T ) and in [8] (effect of N ). The equation published 
in [10] is different, because the effects of N and T where introduced consistently with the Euler–
Bernoulli model, rather than with the Timoshenko one. 

2.3 Nondimensional form of the equations of motion 
The equation of motion (7) is rewritten in nondimensional form to facilitate the analysis of the 

effects of each governing parameter. Considering a dimensionless spatial variable x, a dimension-
less time t, a reference frequency parameter W (representing the structural properties of the shaft) 
along with four dimensionless parameters: 
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where a is the slenderness ratio of the shaft, then Eq. (7) can be rewritten in nondimensional form as: 

    IV II III I 2 II II II
2 2 2 2 2 2

1 2ˆ ˆ ˆw w w w w w w w w w 0, 1
i
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For a homogeneous shaft made of isotropic material with circular section, the shear elasticity 
modulus G and the shear factor k can be expressed as funtions of Young’s modulus and Poisson’s 
ratio [13]: 

                                                  6(1 ) 7 6
,

2(1 ) 7 6 3
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 
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 
n n
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                                           (10) 

hence the dimensionless parameter s depends on Poisson’s ratio only, and within the limits of inter-
est for the present study its variations are of minor importance. As a consequence, Eq. (9) depends 
on four parameters of major interest: slenderness ratio a, dimensionless angular speed w /W, dimen-
sionless axial thrust N̂ and dimensionless twisting moment T̂ [11]. 

2.4 Differential eigenproblem 
The general integral is obtained via modal analysis, solving a differential eigenproblem. Separat-

ing the variables and Laplace transforming with respect to time, Eq. (9) is rewritten in the form: 
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where p2, p1 and p0 depend on the eigenvalue s. The general integral of Eq. (11) can be expressed on 
the basis of the complex exponential function, yielding a characteristic equation (for the exponents 
a) with complex coefficients: 

                               4 3 2
4 3 2 1 0( ) , , ( ) 0aBe B a P a p a p a p a p a p        xf x                       (12) 

a quartic polynomial which can be solved symbolically. The general integral is therefore expressed 
as a linear combination of four complex exponential functions: 

                                                          31 2 4
1 2 3 4( ) aa a aB e B e B e B e   xx x xf x                                          (13) 

and the eigevalues s can be computed after setting four boundary conditions. Assuming the same con-
ditions at both ends of the shaft, the algebraic eigenproblem related to Eq. (11) takes the form: 
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where the first two equations represent the conditions in x = 0, and the following two the conditions 
in x = 1. The complex valued coefficients b and c depend on the kind of boundary conditions, and in 
the more general case they are explicit functions of both the exponents a and the eigevalues s. Set-
ting to 0 the determinant of the coefficient matrix in Eq. (14) yields the characteristic equation [11]: 

              3 4 1 3 2 31 2 2 4 1 4
12 34 13 24 14 23 0,a a a a a aa a a a a a

nm n m m nD D e e D D e e D D e e D b c b c                              (15) 

which is a complex function of the complex variable s. However, pure imaginary eigenvalues, i.e.   
s = i, can be numerically computed by using a zero–find routine of a real function f in the real var-
iable : 

                                                                [ ( )] 0, ( , )f i                                               (16) 

Finally, the critical speeds can be found following the same procedure, setting  = w /W in Eq. (16) 
and solving it with respect to w. 
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2.5 Boundary conditions 
Isotropic supports are considered, hence the boundary conditions can be expressed as functions 

of the complex variable w due to axial symmetry. In the simplest configurations they read: 

I
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w 0
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                                                                                                  (17) 
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Introducing Eq. (13) into the selected boundary equations gives the expressions of the coeffi-
cients b and c in the characteristic equation (15). Notice that the second of Eqs. (19) generalizes the 
expression given in [6] (with opposite sign convention for T   ), while in [10] the terms in square 
brackets are omitted, as a consequence of disregarding the interaction between shear effect and 
twisting moment in the equations of motion. 

3. Discussion of the results 

The effects of slenderness ratio a, angular speed w /W, axial end thrust N̂  and twisting moment T̂  
are studied on natural frequencies and critical speeds of the rotating shaft. 

3.1 Natural frequencies 
Natural frequencies are computed according to the procedure described in Section 2.4, through 

Eqs. (15) and (16). In the case w = 0, the absolute value of ( )i   is a symmetric function of the di-
mensionless parameter . Increasing the modulus of T̂ (positive or negative) reduces the modulus of 
natural frequencies , as shown in Fig. 2 (left). The same qualitative effect can be observed by in-
creasing the modulus of a negative N̂ (compression), and the opposite by raising a positive N̂  (trac-
tion). In the case w ¹ 0, the former symmetry is lost, and two spectra of natural frequencies are 
generated by considering i. Increasing w /W with w > 0, raises the natural frequencies  as di-
splayed in Fig. 2 (right). Increasing the modulus of w /W with w < 0, causes the opposite (symme-
tric) effect.  

 
 

Figure 2. Absolute values ( )  of the characteristic function (a = 50,  = 0.3, clamped ends).  
Left: curves for T̂  > 0, w /W = 0, N̂ = 0. Right: curves for w /W  > 0, N̂ = 0, T̂ = 0. 
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Considering now a simply supported rotating shaft with the following parameters: 
3 97700 [Kg/m ], 210 10 [Pa], 0.3, 10 [mm], 250 [mm], 1000 [rad/s], 0.8864, 0, 0E r l N T         r n w k  

the first 4 natural frequencies λW of the two spectra, computed for the distributed parameter model 
(DPM) according to the method presented in Section 2.4, are reported in Tab. 1 (a = 50, simply 
supported shaft) where they are compared with the results of a finite element analysis (FEA) using 
different numbers of Timoshenko rotating beam elements [11]. 
 
Table 1: first 4 natural frequencies λW [Hz] for a rotating unloaded simply supported shaft (short bearings). 

 w > 0 w < 0 
FEA – number of elements DPM FEA – number of elements DPM 
1 5 10 1 5 10 

1 736.030 652.037 651.882 651.847 726.306 650.833 650.658 650.6243 
2 3351.66 2561.21 2552.27 2550.21 3330.78 2556.56 2547.73 2545.68 
3 – 5652.63 5565.59 5544.83 – 5611.01 5556.45 5535.76 
4 – 9931.85 9540.54 9440.12 – 9737.23 9526.28 9426.22 

 
Some insights regarding modal shapes come from a qualitative analysis of the four exponents a in 

Eq. (12). Their dependency on the natural frequencies  is shown in Fig. 3, for a rotating shaft with   
a = 10, w /W = 50, N̂  = 0.005, T̂ = 0 and  = 0.3. It can be observed that outside a certain interval of 
 values, say [b, f

 ], all the exponents become pure imaginary. The two values b and f can be 
computed as the roots of: 

                                                                
4

2( ) 2P   
w a

y
W s

                                                      (21) 

For non–rotating unloaded Timoshenko beams, the unique value 2 /a s   is sometimes re-
ferred to as cut–off frequency [14], while Eq. (21) generalizes this concept to the rotating and axial-
ly loaded case. Inside the interval ( b ,  f ), modal shapes can be defined by combinations of hyper-
bolic and trigonometric functions; otherwise they are represented by trigonometric functions only. 

 

 

Figure 3. The four roots of Eq. (12), exponents of the modal shapes, as functions of natural frequencies .  

3.2 Critical speeds  
Critical speeds are computed according to the procedure described in Section 2.4, through Eqs. 

(15) and (16). Campbell 3D diagrams can be drawn, highlighting the influence of a third parameter 
(say p), other than natural frequencies  and rotating angular speeds w /W. 

Re( )a


Im( )a  
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Figure 4. Campbell 3D diagram, first forward critical speed. 

 
The n–th nondimensional critical speed C Cˆ /w w W  is represented by a curve obtained by intersec-

tion of the surface associated to the n–th natural frequency  =  (w /W, p) with the plane  = w /W. 
For instance, the curve representing the first forward critical speed 1Cŵ  of a rotating shaft with a = 50, 
N̂  = 0,  = 0.3 and clamped ends (long bearings) is shown in Fig. 4 as a function of p = T̂  (where 
the domain of T̂  has been extended up to unrealistic values to test the robustness of computational 
algorithms). 

However, the effects of the main governing parameters on critical speeds are better highlighted 
by the diagrams displayed in Fig. 5. There the square root of the first nondimensional forward criti-
cal speed 1Cŵ  of a rotating shaft with  = 0.3 and clamped ends (long bearings) is represented as a 
function of the slenderness ratio a, for different values of T̂  in combination with ˆ 0N   (left), ˆ 0N   
(center) and ˆ 0N   (right).  

Increasing the modulus of T̂  always lowers the critical speeds. If ˆ 0N  , then 1Cŵ  shows an as-
ymptotic behaviour towards the first nondimensional natural frequency of a slender beam (dotted 
line in Fig. 4: 1Cˆ 4.730w [15]), since increasing a the Timoshenko model tends to the Euler–
Bernoulli one. The case of traction ( ˆ 0N  ) produces a stiffening effect on the shaft, raising its criti-
cal speeds. The case of compression ( ˆ 0N  ) causes the opposite effect. 

4. Conclusions 

A fast and easy to implement method has been proposed for the calculation of natural frequen-
cies and critical speeds of a continuous rotating shaft, consisting of a homogeneous uniform Timo-
shenko straight beam, rotating at constant angular speed about its longitudinal axis and simultane-
ously subjected to axial end thrust and twisting moment.  

The effects of varying the governing parameters of the model have been studied on natural fre-
quencies and critical speeds, confirming some results found in the literature. Increasing the modulus 
of twisting moment has the effect of reducing the modulus of both natural frequencies and critical 
speeds. While the effects of an additional axial end thrust depend on its sign (positive for traction 
and negative for compression). A positive thrust raises the modulus of both natural frequencies and 
critical speeds, a negative one lowers them. The so–called cut–off frequencies of the Timoshenko 
beam model, on the other hand, have been found to depend on the rotating angular speed and on the 
external loads. 

The results of this study constitute the basis for further developments, including comparison with 
finite element models and rotor stability analysis under combined loads. 

  

T̂  

w
W
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Figure 5: First forward critical speed 1Cŵ as a function of the slenderness ratio a for different values of T̂ . 

REFERENCES 

1 Dimentberg, F.M. Flexural vibrations of rotating shafts, Butterworth, London (1961). 

2 Raffa, F., Vatta, F. Gyroscopic effect analysis in the lagrangian formulation of rotating beams, Meccanica, 34, 
357–366 (1999). 

3 Greenhill, A.G. On the strength of shafting when exposed both to torsion and to end thrust, Proceedings of the In-
stitution of Mechanical Engineers London 6, 182–209 (1883). 

4 Southwell. R.V., Gough, B.S. On the stability of rotating shaft, subjected simultaneously to end thrust and twist, 
British Association for Advancement of Science, 345 (1921).  

5 Colomb, M., Rosemberg, R.M. Critical speeds of uniform shafts under axial torque, Proceedings of the First U.S. 
National Congress of Applied Mechanics, 103–110, New York, USA (1951). 

6 Eshleman, R.L., Eubanks, R.A. On the critical speeds of a continuous rotor, Transactions of the American Society 
of Mechanical Engineers, Journal of Engineering for Industry 91 / 4, 1180–1188 (1969). 

7 Lee, C.W. Vibration analysis of rotors, Kluwer, Dordrecht (1993). 

8 Choi, S.H., Pierre, C., Ulsoy, A.G. Consistent modeling of rotating Timoshenko shafts subject to axial loads, 
ASME Journal of Vibration and Acoustics 114, 249–259 (1992). 

9 Willems, N., Holzer, S. Critical speeds of rotating shafts subjected to axial loading and tangential torsion, Tran-
sactions of the ASME, Journal of Engineering for Industry 89, 259–264 (1967). 

10 Dubigeon, S., Michon, J.C. Gyroscopic behaviour of stressed rotating shafts, Journal of Sound and Vibration 42 / 3, 
281–293 (1975). 

11 De Felice, A. Sviluppo di un algoritmo per l’analisi modale computazionale di rotori ad altà velocità (Develop-
ment of an algorithm for computational modal analysis of high–speed rotors), Master of Mechanical Engineering 
Thesis, University of Modena and Reggio Emilia (2016). 

12 Raffa, F., Vatta, F. Dynamic instability of axially loaded shafts in the Mathieu map, Meccanica, 42, 347–553 (2007). 

13 Cowper, G.R. The shear coefficient in Timoshenko’s beam theory, Journal of Applied Mechanics 33 / 2, 335–340 
(1966). 

14 Stephen, N.G. The second spectrum of Timoshenko beam theory–further assessment, Journal of Sound and Vibra-
tion 297, 1082–1087 (2006). 

15 Blevins, R.D. Formulas for natural frequency and mode shape, Van Nostrand, New York (1979). 
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aa  a

T̂  T̂ T̂  

ˆ 0N   ˆ 0N   ˆ 0N   


