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ABSTRACT
For a fixed set of parameters, computing the performance of

an array of H transducers when taking acoustic coupling into
account usually involves the solution_of a real matrix equation of
order 2N. If N is large, the computation for just one set of
parameters can be a considerable task. In array interaction
studies many parameters are variable, and the computational effort
to cover even a limited range of variables can be formidable
indeed. .One approach to reducing the magnitude of effort required
is to search for scaling laws, even of an approximate nature, which
will enable conlusions drawn from a study of one array to be
applied to a family of arrays. r

THE SCALING LAWS _
This paper, which is based on Ref 1, describes the derivation

of approximate scalinglaws for planar arrays of piezo—electric
elements vibrating either within an infinite, plane, rigid baffle
or'with no baffle present; the transducer faces are deemed to be
rigid and circular, with diameter less fluuxk/Q and, for conven-
ience, the medium is assumed to be water. All transducers of an
array are presumed identical. The several scalinglaws which are
deduced can be applied in combination, providing the restrictions
applicable to each individual law are complied with. '

Over a limited freduency band, a piezo-electric transducer
may be represented by the equivalent circuit of_Fig 1, where upper
and lower case subscripts denote electrical and mechanical units,
respectively. Instead of specifying the equivalent circuit com-
ponents directly, we specify the following quantities: f , mech—
anical resonant frequency of an isolated transducer in water;
a/Ao, piston radius in-wavelengths at fo;p, density of water; c,

velocity of sound in water; qma, mechano-acoustic efficiency of an

isolated transducer in water; Qw, motional Q factor of an isolated

transducer in water; k, coupling coefficient; B, electrical to
mechanical transform coefficient; tan 6, dielectric loss factor.
This method of specification, coupled with the use of simple
approximations (Ref 2) for the mutual radiation impedance, and
with certain restrictions on optional external components LE and

R , enables the impedances of all circuit components of Fig 1 to
bg expressed in terms of the self radiation resistance and react-
ance at £0, Rr(s)o and Xr(s)o, of the normalised frequency, f/fo,

and of quantities which are constant for a specified element. For
given boundary conditions and fixed a/Ao, Rr(s)o and Xr(s)o are

each equal to a'COnstent times f; . Hence one may deduce the

dependence factors of Table 1 for the parameters E, B and f0
(which we shall call scaling law 1).

. With constant voltage drive and no external series impedance,
the force acrOss the input to the mechanical part of the equivalent

circuit is unaffected by the values of k and of tané ; hence the

   



  

acoustic performance is then unaffected by these two parameters}
(Scaling law 2.)

Applying the previously mentioned relations and using approx-
imations for the radiation impedance of small, circular pistons,
further scaling laws can be deduced; these relate performance
curves (overzalimited bandwidth) of elements with different
specifications when.these curves are presented on a generalised
frequency scale of 2QWA, where A is the fractional bandwidth,
(:40 )/r.

-For single transducers with specifications differing solely
in the value of Q , any parameter depending only on the mechanical
impedance.Z r (sge Fig 1) will yield, when"lotted on the genera-
lised frequgncy scale, curves (approximately independent of Q .
(Scaling law_3a.) When there is a constant voltage source and Ho
series impedance in the electrical feed, the acoustic quantities
(e.g. piston velocity, force on piston, radiated power) are such
parameters. Although law 3a does not hold, in general, for'the
electrical quantities (such as input impedance and power), it does
hold for such quantities if the elements have negligible dielect-
ric loss, are parallelhtuned to f0 and have equal values of

Q (k2/(1—k2))1/2. (Scaling law 3b.) Computational checks for some
3 all arrays indicate.that laws 3a and b hold not only for isola—
ted elements but for elements in arrays. An example of law 3a is
shown in Fig 2 for two baffled and uniformly energised arrays
whose specifications only differ in that they have 0 values of 6
and 12, respectively. There.are 3 unique element pagitions, name-
ly corner, mid-side and centre;.thus 3 separate full line curves
are shown on each graph., In addition, a broken line curve shows
the behaviour of an isolated element. The severe interaction
effects follow very similarcurves for the two arrays.

The following relations apply to corresponding elements of
-arrays with different a/Ao, but otherwise identical specification.
Piston-velocity, radiated power, input current and power are prop-V
ortional to 1/Rr(s)o, whereasinput impedance and mutual and total

radiation impedance are proportiohal to R -. (Scaling law 4.)
An'example is shown in Fig 3, where, on tfiéslgght hand graph of
each pair, the expected highest point of the array curves as
scaled from the left hand graph is indicated by ashort, horizon-
tal line.

Similarly, an array in an infinite, rigid baffle and an'un-
baffled array with otherwise identical specifications will scale
approximately in the ratio or inverse ratio of the respective
values of Rr(q)o. (Scaling law 5.) Fig 4 shows an example.

By combination of scaling laws 4 and 5 one can deduce that
two similar arrays, one baffled and one unbaffled, yet both with
elements having (nearly) the same equivalent circuits, will yield
approximately the same performance if a/A for the baffled array
-is 1/6th less than for the unbaffled one.
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in the random medium problem. In the limit (b >> 1 Rayleigh statistics
obtain and '

;<I“> = n! , I ' (5)_

corresponding to the saturated regime for wave propagation in a random
medium. Actually, it can be. shown that a sufficient condition for
eqn. (5) to hold, at least for the lower orders, is ¢A>2 and <19 > 1.

Correlation effects for the scattered field received at spatially
and temporally separated points have also been considered. Let
p1 = p(;°, 51, t) and’pz =- p(50, £1 + Ag, t + 1) be the complex envelopes
of the received field, where A1: and 'r are the spatial and temporal
separations of the observations. Then, by a development parallel to

- that for a single receiver, the joint distributions for the scattered
wave envelopes can be derived. _ The general results are rather complicated
and will not be reproduced here; however for the case -<M >2, ¢> 1, there
is obtained '

)2 25H, -n; 1; 8xp(-2¢2(1 - m] . (a)n n
= '<I1 12> (n.

where ‘1’ =' “’(E, T), and E can be simply related to A1:
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Fig. 1.

  

Surface scattering geometry

 


