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The Underwatér Acoustics Group of the Institute of Acoustics was

duely constituted in July 1975. The membership already exceeds 50.

The Portland meeting on 'Recent Developments in Underwater Acoustics'
is the first general meeting organized by the Group. The quality of the
papers submitted, as well as their numbers, justifies the holding of such

meetings from time to time.
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this meeting, and to the members of the Organizing Committee for their

hard work in putting it together.
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THE USE OF LINEAR SYSTEM THEORY IN ACCUSTIC RADIATION

AND SCATTIRING ANALYSIS
By A. Freedman

fdmiralty Underwater Weapons Establishment, Portland, Dorset.

INTRODUCTION

Some years ago I put forward theories relating to scattering and to
radiation of pulsed acoustic or electromagnetic waves. Those theories were
based upon certain physical approximations (of the physical optics type)
and were also limited to input signals of small fractional bandwidth. In
essence, the scattered radiation at a fieldpoint was shown to be made up,
in general, of a set of "Image Pulses" whose envelopes Were approximate
replicas of the envelope of the input signal 11273; gimilarly, at a point
in the field of a radiator, the radiation was shown to be made up of a set
of so=called "Replica Pulses" 15445,6,

More recently Wiekhorst7 brought out a very generalised theory,
applicable to most linear physical processes, and giving a picture of system
outputs with no bandwidth limitations on it. Wiekhorst explained that my
Image Pulse concept of echo formation corresponded to a particular case of
this linear system theory, and I gave a very brief description of Wiekhorst's
interpretation of acoustic echo formation in Ref. 8. Since then I have con—
siderably developed the formalism of the above linear system approach and
have explicitly derived the solution in the small fractional bandwidth
situation. This has enabled formal relationships to be established between
the Image and Replica Pulse theories and the linear system theory. It has
also enabled, on the one hand, the former band-limited results of the Image
and Replica Pulse theories to be presented free of bandwidth limitations,
and, on the other, it has enabled one to see the limits of useful applica-
bility of the previous band-limited theories,

I shall summarise the salient features of the linear system theory,
show its relations to my earlier Image Pulse and Replica Pulse theories and
present examples of results obtained using the non-restricted and the
restricted bandwidth formulae.

THE LINEAR SYSTEM APPROACH

If a Dirac pulse, 8(t), where t denotes time, is applied to the input
of an arbitrary linear system, the output is the so—called impulse response
function, h(t), of the system, For an arbitrary input signal, s(t), the
output, e(t)}, is given by the convolution integral

e(t) = ii s{t) h{t=t} dt = s{t) * n(t). ' | (1)

In general, the impulse response function may contain Dirac pulses

(Fig. 1(a)), and we denote these by 2.0 S(t—tg). The times tgi where
|}

g = 14250444F, Tefer to all times at which Dirac pulses occur in any order
of derivative of h(t), and not just to times at which pulses occur in the
zero order derivative. Thus some or all of the amplitudes a o may be zero

(Fig. 1(b)). For convenience we introduce the nomenclature htt) ] hE?)(t),
and we denote the remainder of h£?)(t) after removal of any Dirac pulses by
hgo)(t) (Fige1{c)). Thus




(0) (0)
h, (t) = 351 8.0 8(t tg) + hy (t)e (2)
The first derivative, with respect to time, of hgo)(t), namely h(1)(t),
may contain Dirac pulses (Fig. 1(d)) which we denote by 3, 1 S(t—t )e We
?
also denote the remainder of h (t) after removal of any such Dlrac pulses
(Fige 1(e)) by ni (1) (Fie. 1(£). 5o

F
O A L (3)

We can continue this process of "stripping" Dirac pulses and differen-
tiating the "stripped" remainder, and for the gqth stripped derivative we
shall have

¥
nla) (q)
t Z a §(t=t ) + h t}). L
O N A0 | ()
Let the mth be the lagt differentiation of the impulse response func-
tion to yield Dirac pulses, i.e. repeated further differentiation of
(m)(t) yields no further such pulses.

Then it can be shown that the following egquations apply for the out-
put signal.

e(t) = ¢, (t) + oy(t), | (5)
®u,e,nlt) = 8 oy a(u[n-y])(t'ts)’ (6)
SRORIE RENROT | | | (7)
W= 3 (0, | (8)
o (t) = s{) () » n{™ (), | (9)

y is an integer, which in the cases of acoustic radiation and scatter—

ing takes the value of unity. Expressions such as s(_m)(t) denote the mth
integral of the function with respect to the argument.

The above equations show that the output of a linear system consists,
in general, of two parts. The first is made up of components, ey g n(t),
18]
each of which is associated with a Dirac pulse, at time tg' in the nth
derivative of the impulse response function of the system; each such com—
ponent is a scaled, and appropriately delayed, signal whose nth derivative
is a replica of the input signal. The output, e, (t), due to all such com~

ponents associated with a given tg is the sum of a set of signals, each

D




1.1

starting at the same time and each having an envelope of different shape,

as each is associated with a different value of n. As all components of

€ g(t) start at the same time they are not physically resolvable from one
?

another, and e, g(t) forms a physical output entity. Its envelope shape
'
will depend upon the relative distribution of the amplitudes, ag n? of its
'
components., The various ey g(t) start at different times, tg’ and, subject
'

to appropriate pulse lengths and bandwidths, are in principle resolvable
from one another. The second part of the output of a linear system con-—
sists of a single component which is the convolution of the mth integral
of the input signal with the mth "stripped" derivative of the impulse res-—
ponse function; the shape of this second part is thus not simply related
to that of the input signal, and its duration could be the sum of the
durations of the input signal and of the impulse response function.
Either, but not both, of the two parts may be zero. When the first part
is zero, the second part degenerates to the convolution of the input signal
and the impulse response. Almost all the cases I have investigated so far
have either yielded outputs where eB(t) is zero or small, or, in a few

instances, where eA(t) is zero,.

As an illustration of the principles involved, assume that an input

signal of the form t exp(—tz) (Fig. 2a) is fed into a system whose impulse
. response function has the form [48(1-8) + 3H(t-8) - 3H(1-14)] (Fig. 2b),
where H(t) represents a Heaviside step function. Then it can be shown
straightforwardly that eA(t) = eA’1’0(t) + eA’1,1(t) + eA’2'1(t) and

eB(t) = 0. The three components of eA(t), i.e. of e(t), are illustrated
in Figs. 2c, 4 and e, and the total output signal is presented in Fig. 2f.

THE SMALL FRACTIONAL BANDWIDTH SOLUTION

A considerable simplification is brought about when the bandwidth of
the input signal is appropriately restricted.

Meking the assumption that s{t) is band limited to within the limits
wo-(Aw/2) and wo+(ﬁw/2 , and that @D varies little over this band, (i.e.

that there is a sufficiently small fractional bandwidth), the following
approximate formulae are derived. That the results are band limited is

denoted by an upper tilde.

g(t) = €,(t) + Ey(t), (10)
5 gt = 8y oy (o) T s, (1)
CAROREIE NN | (12)
ROE ‘i ‘sﬂ,g(t), | (13)
T8 = ()™ s(8) ¢ B (). (14)



Each component, & (t), associated with a Dirac pulse, at time tg,

A,gyn
in the nth derivative of h(t) is now a scaled, phase shifted and appro—
priately delayed replica of the input signal. Thus, the overall envelope
shape of &, (t) is also a replica of the envelope of the input signal,

g (t) con51sts of a scaled convolution of the input signal with the mth

strlpped derivative of the impulse response function.

For an input signal consisting of an amplitude modulated pulse with
half sine envelope and containing an integer number of cycles at carrier
frequency W scaled output components e, g n(t) and eA g0 (t) are compared

15y '

in Fig. 3. They are plotted for input pulses containing 10, 5 and 3 cycles,
respectively, for three values of n=y. It turns out that, in the case of
backscattering of a plane wave or of farfield radiation, these values of
n—y are associated with certain geometrical features of the scattering or
radiating surfaces, and these are also indicated in Fig. 3. For n~y = 0,
the approximate and exact curves are identical; for the other values of n-y
the agreement is good even for pulses as short as three cycles. Thus, the
so—called "small fractional bandwidth" approximation appears to be satis-—
factory for fractional bandwidths as large as unity.

THE EFFECT OF ASYMPTOTES IN‘h(n)(t)

In some quite ordinary physical situations, at a given tg, no Dirac

pulses occur for any order of derivative of the impulse response function;
instead asymptotes are encountered. For example, Fig. 4 shows the impulse
response function relating the normal velocity of a circular piston to the
resulting velocity potential at a nearfield point; the first two derivatives
are also illustrated, and asymptotes are met from the first derivative on-
wards. Present information indicates that where the lowest derivative of
h(t)} in which an asymptote occurs is the rth, an output contribution is
produced which is intermediate between what would be produced by Dirac
pulses occurring in the rth and (r+1)th derivatives.

THE EFFECT OF DIRAC PULSES IN s(n)(t)

Where the input signal or any of its derivatives alsc contain Dirac
pulses, further series of output components result. For brevity, these are
not dealt with here. -

THE IMAGE PULSE AND REPLICA PULSE THEQRIES

In the Replica Pulse theory of acoustic radiation1’4 the model assumes
the input signal to be the normal velocity of the radiating surface and the
output to be the resulting pressure at a field point. The model for the
Image Pulse theory of echo formation!s2 included transmitting and receiving
transducers, but we drop these electro-acoustic links to avoid band-
limiting terms; the input signal in the echo formation model is now the
incident field pressure normalised to unit distance in the reference direc—
tion from a directional source, while the output is the pressure of the
scattered field back at the source. The impulse response function for the

radiation model turns out to be h(t) = (pcz/Eﬂ) 0(2)(r) and that for the
echo formation model to be h(t) = (~c/27) W ( ) p is the density, ¢ the
sound velocity, Cw(r) the "velocity—welghted, range-normalised” area of the

radiating surface? within range r of the field point, and ww(r) the

S
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"directivity-weighted" solid angle subtended at the source2 by those parts
of the scattering surface within range r. Taking account of these values
of h(t) (and of the removal of the electro-acoustic transducers) the solu-
tions in Refs. 4 and 2 for pulsed inputs reduce identically to Eg. {13)
for EA(t). In the Image Pulse and Replica Pulse treatments of Refs. 1, 2

and 4 a remainder term in a series expansion of the scattering integral
and of the radiation integral was erroneously discarded. After recovering
this remainder term in each case, substitution of the appropriate value of
h{t) shows that, for each of the two models, the remainder term reduces
identically to ﬁB(t) ag given by.Eq. {14). This completes the demonstra—

tion that the Image Pulse and Replica Pulse theories are particular cases
of the more general linear system approach.

We are now in a position to compare the approximate, band-limited
results given by the Replica and Image Pulse theories with the results
when there is no bandwidth approximation. For convenience, examples of
radiated fields are presented, but similar results could be shown for back—
scattering, Three types of situation are illustrated. (i) Where for given
t , Dirac pulses occur in only one order of differentiation of h{t),

(ii) where, for given t _, Dirac pulses occur in more than one order of

differentiation of h(t%, (iii) where no Dirac pulses occur at any time in
any derivatives of h{t). Situations (i), (ii) and (iii) are illustrated
in Figs. 5 to 7 by the fields of rectangular, conical and circular, uni-
formly vibrating radiators, respectively. For the latter example, the
Replica Pulse approach was supplemented by an asymptotic expansion
treatment? in order to get the small fractional bandwidth solution. These
examples demonstrate that, for an input pulse containing even a very few
cycles, the small fractional bandwidth approximation (used in the Image
and Replica Pulse theories) gives results very close to the true waveforms.
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