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Fatigue assessment of vibrating structures is usually made in time domain, where a well-

established set of tools to calculate load spectra is available (e.g. Rainflow Counting). However, 

when analysing fatigue under random excitations on linear vibration systems, frequency domain 

methods were preferred, because they offer precise definitions of random signals and also great 

computation advantages. Currently available methods of this type are based on the signals pow-

er spectral density (PSD) and corresponding methods for the estimation of load spectra (e.g. 

Dirlik method). The PSD is the second order spectrum and therefore only describes Gaussian 

distributed random signals adequately. Applying PSD-based methods for non-Gaussian random 

signals, which often occur in real world applications, can cause significant errors in load spectra 

estimations. A commonly used parameter to assess the deviation of a random signal’s probabil-

ity distribution compared to a Gaussian distribution is the value of kurtosis. Hence, methods 

were developed, which use this kurtosis value to assess and also correct inappropriately estimat-

ed load spectra. The presented paper shows that this single kurtosis parameter is insufficient for 

a precise characterisation of non-Gaussian vibration signals. This can be achieved by the use of 

higher order spectra, which allow a characterisation of these deviations from a Gaussian distri-

bution in frequency domain. Currently available estimation techniques for these higher order 

spectra are limited to quite short time signals. Though, fatigue analysis of random vibrations is 

often based on long measured time signals (e.g. up to 109 samples). Therefore this paper further 

presents an efficient and robust method for calculating higher order spectra of very long time 

signals as a whole. This technique can replace the usually applied error-prone averaging meth-

ods that are based on the analysis of short time signals.  
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1. Introduction 

Mechanical structures are often subjected to random service load vibrations throughout a long 

period of time, leading to relevant fatigue loads. Therefore adequate assessment methods are need-

ed. Usually this is done in time domain, where vibrating structures were modelled using Finite Ele-

ment Methods (FEM) or Multibody Systems (MBS) and subjected to measured or simulated vibra-

tion loads 𝑥(𝑡). The resulting stress responses 𝑦(𝑡) can then be analysed by fatigue cycle counting 

methods, e.g. the widely accepted Rainflow Counting (RFC) [1] in order to determine load spectra 

𝑠𝑅𝐹𝐶(𝑁). They concentrate fatigue cycle amplitudes over a cumulated number of cycles. Finally 

damage accumulation theorems, e.g. Palmgren Miner (PM) [2], enable an assessment of the struc-

ture’s state of fatigue, e.g. expressed as equivalent (constant) stress amplitude 𝑠𝑒𝑞 with the corre-

sponding number 𝑁𝑒𝑞 of stress cycles [3] (see Fig. 1 a). When analysing fatigue under random vi-

bration loads, time domain based fatigue assessment methods can get computationally inapplicable, 
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since the random vibration loads must be quite long in order to capture the signal’s statistical prop-

erties adequately. Additionally, with an increasing complexity of the vibration model (e.g. in FEM), 

the simulation efforts to evaluate the structure’s stress response even get worse. Therefore, very 

efficient frequency domain techniques were developed (see [4-6]) that offer much faster simulations 

of linear vibration structures and also enable an adequate definition of random vibration loads in 

terms of power spectral densities (PSD). Once the PSD of the structure’s stress response 𝑆𝑦𝑦(𝑓) is 

computed, the load spectra 𝑠𝐷𝐾(𝑁) can be estimated using the Dirlik method (DK) [7] or others [8]. 

Fig. 1 b schematically shows an overview of a specific frequency based fatigue analysis procedure 

on random vibration loads using the DK estimator.  

 

Figure 1: Concept of fatigue assessment of random vibration loads in a) time or b) frequency domain 

These very efficient PSD-based simulation methods work very well if the random vibration load 

is Gaussian distributed (e.g. [8]). Deviations from the Gaussian distribution may cause severe devia-

tions in the estimated loads (e.g. [9-11]). As engineering problems are often related to non-Gaussian 

random vibrations, considerable research has been done to solve this issue (e.g. [10, 12, 13]). The 

proposed solutions are mainly based on the assumption, that the deviation to a Gaussian distribution 

is a single property valid for the entire frequency range of the signal. A typically used concept for 

describing this deviation is the kurtosis value 𝛽, which is based on the second and fourth order mo-

ment of the probability distribution (see Eq. (1)). [14] shows, that the deviation from a Gaussian 

distribution has to be understood as a property depending on the frequency of the random signal. 

This paper now presents a conclusive analysis tool for this issue based on the application of higher 

order spectra. They allow a well-founded insight into the distribution of higher order statistical 

moments in the frequency range of the signal. To demonstrate the capacity of these tools, an exam-

ple with two different random signals having identical PSD and probability distribution (PD) (there-

fore also identical kurtosis) is presented. Despite these similar statistical properties, the signals will 

have a totally different fatigue impact on linear vibration systems. 

Therefore, this paper presents some basic facts about the analysis of random vibration signals in 

section 2. It shortly introduces higher order spectra, their importance in characterising non-Gaussian 

random vibration signals and the way they were usually computed (with a strong limitation to short 

time signals). It then introduces an efficient method to compute higher order spectra of very long 

vibration signals as a whole. In section 3, this paper defines an example of two different non-

Gaussian random vibration loads having equal PSD and probability distribution. By applying the 

commonly accepted Fatigue Damage Spectrum (FDS, see [15]) it is shown, that these signals have a 

completely different impact on the fatigue of a vibration system. 

2. Analysis of non-Gaussian random signals 

2.1 Second order spectral analysis 

For the analysis of a random vibration signal 𝑥(𝑡) with zero mean (𝑥̅ = 0) and a length of time 

𝑇, there are some major quantities of importance. The most common ones are variance 𝜎2, skew-

ness 𝛾 and kurtosis 𝛽. They can be derived from the central moments 𝑚𝑖 of 𝑖-th order [4]. 
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𝜎2 = 𝑚2,    𝛾 = 𝑚3 𝑚2
3 2⁄⁄ ,    𝛽 = 𝑚4 𝑚2

4 2⁄⁄ ,   with:  𝑚𝑖 = lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑡)𝑖 𝑑𝑡

𝑇

0
 (1) 

In analogy to Eq. (1), where the variance is computed by integration in time domain, it can also 

be computed by integration in frequency domain [16], where 𝑆𝑥𝑥(𝑓) is the PSD of signal 𝑥(𝑡). 

𝜎2 = 𝑚2 = ∫ 𝑆𝑥𝑥(𝑓) 𝑑𝑓
∞

−∞
  (2) 

Spectral analysis offers different methods for the derivation of PSDs. The indirect method is 

based on the autocorrelation function 𝑅𝑥𝑥(𝜏) of 𝑥(𝑡) (Wiener Khinchin Theorem [16], where 𝑗 de-

notes the imaginary unit and 𝜏 the time lag). 

𝑆𝑥𝑥(𝑓) = ∫ 𝑅𝑥𝑥(𝜏) 𝑒−2𝑗𝜋𝑓𝜏 𝑑𝜏
∞

−∞
,      with: 𝑅𝑥𝑥(𝜏) = lim

𝑇→∞

1

𝑇
∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏)

𝑇

0
 𝑑𝑡  (3) 

The direct method is based on the Periodogram [16] ( 𝑋(𝑓) is the Fourier Transformation of 

𝑥(𝑡),  ∗ denotes the conjugate complex). 

𝑆𝑥𝑥(𝑓) = lim
𝑇→∞

1

𝑇
 𝑋(𝑓) 𝑋∗(𝑓),    with:  𝑋(𝑓) = lim

𝑇→∞
∫ 𝑥(𝑡) 𝑒−2𝑗𝜋𝑓𝑡 𝑑𝑡

𝑇

0
 (4) 

There are more common methods for PSD estimation, like the Bartlett or the Welch method, 

which are modified versions of the Periodogram in a way of using time sample overlaps or averag-

ing techniques. A special feature of the central moments appears, when the vibration signal 𝑥(𝑡) is 

Gaussian distributed and of zero mean: the higher order central moments are either zero (for odd 

orders) or just defined by the variance 𝜎2 (for even orders) [17, 18]. 

𝑚0 = 1 𝑚2 = 𝜎2 𝑚4 = 3𝜎4 𝑚6 = 15𝜎6 𝑚8 = 105𝜎8 … 
(5) 

𝑚1 = 𝑥̅ 𝑚3 = 0 𝑚5 = 0 𝑚7 = 0 𝑚9 = 0 … 

This means, that if 𝑥(𝑡) is Gaussian distributed and of zero mean, there is no further information 

in higher order central moments; skewness and kurtosis turn out to be 𝛾 = 0 and 𝛽 = 3. However, 

if the vibration signal is non-Gaussian, higher order moments contain all the information about the 

actual probability distribution. This is probably the reason why the kurtosis 𝛽 has become a com-

monly used indicator for the deviation from a Gaussian distribution. Since 𝛽 is just a single parame-

ter, it summarizes the 4th order non-Gaussian properties of a random signal for its entire frequency 

range, but it does not contain any further information about the frequency distribution of 𝑚4. For 

the 2nd moment 𝑚2 this information is already available from Eq. (2). The solution of this integral 

of a limited frequency interval ∆𝑓 might be understood as the distribution of the 2nd moment in the 

frequency range 𝑓 of signal 𝑥(𝑡). 

𝑚2(𝑓, ∆𝑓) = ∫ 𝑆𝑥𝑥(𝑓) 𝑑𝑓
𝑓+∆𝑓

𝑓
  (6) 

This 2nd moment also corresponds to the variance 𝜎𝑛
2 of a band pass filtered signal  𝑥(𝑡, 𝑛) within 

the frequency interval 𝑛 from (𝑛 − 1)∆𝑓 to 𝑛∆𝑓 (see [16]). In analogy to this 2nd order moment, 

higher order spectra give equal relations for the distribution of higher order moments in frequency 

domain. As this information is indispensable for a proper understanding of a non-Gaussian signal, 

the next section offers the necessary tools from the area of higher order spectral analysis. 

2.2 Higher order spectral analysis 

In analogy to the 2nd order moment, higher order spectra give equal relations for the distribution 

of higher order moments in frequency domain. For example, the distribution of the 4th order mo-

ment in frequency domain, which relates with the kurtosis, is represented by the 4th order spectrum 

(also known as trispectrum). In general, higher order spectra can be calculated in an equal manner 

compared to the computation of the PSD. In analogy to the indirect method, the 𝑖-th order spectrum 

𝑆𝑖
𝑥of the vibration signal 𝑥(𝑡) can be computed by the Fourier Transformation of the 𝑖-th order au-

tocorrelation function [19] 

𝑆𝑖
𝑥(𝑓1,⋯ , 𝑓𝑖−1) = ∫ ⋯

∞

−∞
∫ 𝑅𝑖

𝑥(𝜏1,⋯ , 𝜏𝑖−1) 𝑒
−2𝑗𝜋(𝑓1𝜏1,⋯,𝑓𝑖−1𝜏𝑖−1)∞

−∞
  𝑑𝜏1 ⋯ 𝑑𝜏𝑖−1,  (7) 

𝑅𝑖
𝑥(𝜏1, ⋯ , 𝜏𝑖−1) = lim

𝑇→∞

1

𝑇
∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏1) ⋯ 𝑥(𝑡 + 𝜏𝑖−1)

𝑇

0
 𝑑𝑡.  (8) 
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In analogy to the direct method, there is a similar computation method to compute the 𝑖-th order 

spectrum by Polyperiodograms [19]. 

𝑆𝑖
𝑥(𝑓1,⋯ , 𝑓𝑖−1) = lim

𝑇→∞

1

𝑇
𝑋(𝑓1) ⋯ 𝑋(𝑓𝑖−1)𝑋

∗(𝑓1 + ⋯ + 𝑓𝑖−1)  (9) 

Both methods, Eqs. (7) and (9), appear as Eqs. (3) and (4) for 𝑖 = 2. This points out, that the 

PSD is the 2nd order spectrum, containing the information of the 2nd order central moment in 

frequency domain or the variance, respectively. In a similar way as higher order central moments 

contain no further information about the statistical properties of a Gaussian distributed random 

vibration signal with zero mean, higher order spectra also contain only trivial information about the 

Gaussian distributed vibration signal in frequency domain. This is because one can get to the central 

moments of a Gaussian distributed random vibration signal (see Eq. (5)) by integration of higher 

order spectra in frequency domain [17,19]. 

𝑚𝑖 = ∫ ⋯ ∫  𝑆𝑖
𝑥(𝑓1, ⋯ , 𝑓𝑖−1) 𝑑𝑓1 ⋯ 𝑑𝑓𝑖−1

∞

−∞

∞

−∞
  (10) 

Nevertheless, if the random vibration signal is non-Gaussian, higher order spectra contain the in-

formation about non-Gaussian properties of the random vibration signal in frequency domain. 

2.3 Efficient computation method for higher order spectra and long time signals 

Applying Eq. (7) or (9) on even a short time vibration signal (e.g. with 104 data points), compu-

tation efforts turn out to be infeasible. This is because of the multidimensional character of higher 

order spectra, which means that multidimensional Fourier Transforms (see Eq. (7)) or numerically 

costly frequency combinatorics (see Eq. (9)) were needed. Furthermore, because of its multidimen-

sional appearance, higher order spectra are also challenging in the amount of data, because already 

a trispectrum (𝑖 = 4) is represented by a three dimensional array with (104)3 data points. This is 

why higher order spectra algorithms are usually just applied on very short time signals if necessary 

together with error-prone averaging techniques [20, 21]. Nevertheless, once the higher order spectra 

are calculated, the amount of data may be strongly reduced by piecewise integration in frequency 

bands 𝑛 to a certain reasonable resolution (corresponding to Eq. (6)).  

𝑚𝑖
 (𝑛1, ⋯ , 𝑛𝑖−1) = ∫ ⋯ ∫ 𝑆𝑖

𝑥(𝑓1, ⋯ , 𝑓𝑖−1) 𝑑𝑓1 ⋯ 𝑑𝑓𝑖−1
 

𝑛𝑖−1

 

𝑛1
,   with:   −∞ < 𝑛 < ∞  (11) 

This underscores the need of a more efficient method, which is able to calculate the reduced 

higher order spectra without the need of calculating the higher order spectra in its full resolution 

first. This can be achieved by taking Eq. (7) and (8) and reformulating them. After some substitu-

tions for 𝑡 + 𝜏 and the use of the Fourier Transformation one can find the following expression. 

𝑆𝑖
𝑥(𝑓1, … 𝑓𝑖−1) = lim

𝑇→∞
∫ 𝑥(𝑡) 𝑋(𝑓1)𝑒

2𝑗𝜋𝑓1𝑡 ⋯ 𝑋(𝑓𝑖−1)𝑒
2𝑗𝜋𝑓𝑖−1𝑡 𝑑𝑡

𝑇

0
  (12) 

This equation may now be substituted into Eq. (10) for reformulation until getting the following. 

𝑚𝑖 = lim
𝑇→∞

∫ 𝑥(𝑡)
𝑇

0
lim

𝑓1→∞
∫ 𝑋(𝑓1)𝑒

2𝑗𝜋𝑓1𝑡 𝑑𝑓1
𝑓1

−𝑓1
⋯ lim

𝑓𝑖−1→∞
∫ 𝑋(𝑓𝑖−1)𝑒

2𝑗𝜋𝑓𝑖−1𝑡 𝑑𝑓𝑖−1𝑑𝑡
𝑓𝑖−1

−𝑓𝑖−1
  (13) 

If the integrations of Eq. (13) were evaluated for the whole range of frequencies, this expression 

turns out to be the equation of the 𝑖-th order central moment again (see Eq. (1)). Now it is possible 

to use the piecewise integration, as mentioned in Eq. (11); Eq. (13) becomes the following. 

𝑚𝑖(𝑛1, … , 𝑛𝑖−1) = lim
𝑇→∞

∫ 𝑥(𝑡)
𝑇

0
∫ 𝑋(𝑓1)𝑒

2𝑗𝜋𝑓1𝑡𝑑𝑓1
 

𝑛1
⋯ ∫ 𝑋(𝑓𝑖−1)𝑒

2𝑗𝜋𝑓𝑖−1𝑡𝑑𝑓𝑖−1 𝑑𝑡
 

𝑛𝑖−1
  (14) 

The piecewise integration turns out to be inverse Fourier Transformations over a specific range 

of two-sided frequencies. In this manner, every piecewise integration over the frequency works like 

a bandwidth filter for interval 𝑛, which gives the filtered complex vibration signal: 

𝑥(𝑡, 𝑛) = ∫ 𝑋(𝑓)𝑒2𝑗𝜋𝑓𝑡 𝑑𝑓
 

𝑛
  (15) 

The reduced higher order spectra may then be evaluated by the following alternative equation. 
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𝑚𝑖(𝑛1, … , 𝑛𝑖−1) = lim
𝑇→∞

∫ 𝑥(𝑡)
𝑇

0
 𝑥(𝑡, 𝑛1) ⋯  𝑥(𝑡, 𝑛𝑖−1)  𝑑𝑡  (16) 

This equation enables a computation of the reduced higher order spectra without the numerically 

costly evaluation of the higher order spectra in its full resolution (see. Eqs. (7) and (9)). By the use 

of Eq. (16), it is possible to switch from the single value of a certain central moment (see Eq. (1)) to 

the corresponding higher order spectra in a reasonable resolution or even in its full resolution (see 

Eqs. (7) or (9)). Since filtering can be performed numerically very efficiently based on fast Fourier 

Transform algorithms, this method may be applied to very long vibration signals (e.g. 109) as they 

usually appear in fatigue applications or, applied to short time signals, even in real time. A simple 

performance test on an ordinary computer system shows the huge computation advantage. Deriving 

the reduced trispectra with 24 two-sided frequency bands 𝑛 of a certain random vibration signal 

with 104 data points under the use of Eq. (9) took approximately 10 h. The same trispectra was 

evaluated with the proposed method from Eq. (16) in about 1 s. So far filter based spectra estima-

tion methods have only been found for the determination of PSDs (e.g. [16]). The presented method 

widens the filter based spectra estimation techniques to higher orders. 

In section 3, the presented method will be used to evaluate the 4th order spectrum of two differ-

ent, specifically designed non-Gaussian random vibration signals with equal PSD and distribution. 

This will demonstrate kurtosis related properties of the signals in certain frequency bands and will 

also explain their different impact on the fatigue load of a vibration system. 

3. Fatigue assessment of non-Gaussian random signals 

3.1 Generation of different non-Gaussian random vibration signals with same PSD 

Depending on the field of application, there are different ways of generating non-Gaussian ran-

dom vibration signals; [22] gives an overview. The general intention of the presented paper is to 

demonstrate that different non-Gaussian random signals (here e.g. 𝑥𝑛𝑔1(𝑡) and 𝑥𝑛𝑔2(𝑡)) each with a 

different fatigue impact on a vibration system can have identical PSD and distribution. For the gen-

eration of these signals a technique is used starting from a random Gaussian signal 𝑥𝑔(𝑡) (here with 

a constant PSD from 0 to 600Hz, a standard deviation 𝜎 = 1 𝑚𝑚  and a sample number of 1.2 ⋅
106) multiplied with a slowly changing non-Gaussian random signal 𝑎(𝑡): 𝑥𝑛𝑔(𝑡) = 𝑎(𝑡) ∙ 𝑥𝑔(𝑡) 

[16]. The resulting signal 𝑥𝑛𝑔(𝑡) is again scaled to 𝜎 = 1 𝑚𝑚 and is assumed to be stationary. 

𝑥𝑛𝑔(𝑡) may then be expressed in frequency domain with a complex set of 6 ⋅ 105 Fourier coeffi-

cients 𝑋𝑛𝑔(𝑓) (one-sided), represented as magnitudes |𝑋𝑛𝑔(𝑓)| and phases 𝜑𝑛𝑔(𝑓). The different 

signals 𝑥𝑛𝑔1(𝑡) and 𝑥𝑛𝑔2(𝑡) are now generated by replacing these phase angles 𝜑𝑛𝑔(𝑓) by new, 

synthetically generated, equally distributed phases either in the first (range 1: 0 ≤ 𝑓 < 300Hz, 

phases 𝜑𝑛𝑔1(𝑓), see Fig. 2 in grey) or second (range 2: 300 < 𝑓 ≤ 600Hz, phases 𝜑𝑛𝑔2(𝑓), see 

Fig. 2 in grey) half of the frequency range of 𝑋𝑛𝑔(𝑓). Subsequent inverse Fourier Transformations 

produce the two non-Gaussian random vibration signals 𝑥𝑛𝑔1(𝑡) and 𝑥𝑛𝑔2(𝑡) (Fig. 3 a and d) in 

time domain with nearly equal distribution. Since the PSD is real valued and just depending on 

|𝑋𝑛𝑔(𝑓)|, both signals share the same PSD and standard deviation of 𝜎 = 1 𝑚𝑚. Fig. 2 shows the 

generation process schematically. 

 

Figure 2: Different non-Gaussian random vibration loads with equal PSD and distribution 

 𝑋𝑛𝑔(𝑓)  𝜑𝑛𝑔(𝑓) 

 𝑋𝑛𝑔(𝑓)  𝜑𝑛𝑔1(𝑓) 𝑥𝑛𝑔1(𝑡) 
𝑖𝐹𝐹𝑇 

 𝑋𝑛𝑔(𝑓)  

original phases 

𝑥𝑛𝑔2(𝑡) 
𝑖𝐹𝐹𝑇 

new phases 

𝜑𝑛𝑔2(𝑓) 

new phases original phases 
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Further, the trispectra of 𝑥𝑛𝑔1(𝑡) and 𝑥𝑛𝑔2(𝑡) were analysed in terms of the 4th order moments 

𝑚4,𝑛𝑔1(𝑛1, 𝑛2, 𝑛3) and 𝑚4,𝑛𝑔2(𝑛1, 𝑛2, 𝑛3) corresponding to the method presented in section 2 (see 

Eq. (16)). Therefore 24 frequency bands (𝑛 =-12 … 12, two-sided corresponding to -600Hz ≤ 𝑓 ≤
600Hz) have been used. Consequently the results consist of 243 data points in three dimensions 

𝑛1,2,3. As neither a full introduction to the interpretation of trispectra nor a complete display of these 

data is impossible in 2D, just some selected data are presented and explained here.  

 

Figure 3: a) Signal 𝒙𝒏𝒈𝟏(𝒕) (𝜷 = 𝟓. 𝟕), its trispectrum in b) for 𝒏𝟑 = −𝟒 and c) for 𝒏𝟑 = −𝟗, d) signal 

𝒙𝒏𝒈𝟐(𝒕) (𝜷 = 𝟓. 𝟕), its trispectrum in e) for 𝒏𝟑 = −𝟒 and f) for 𝒏𝟑 = −𝟗 

They show the two signals and cross sections of their trispectra at 𝑛3 = −4 and 𝑛3 = −9, repre-

sentative for the first and second half of the negative frequency range, respectively. 𝑛1and 𝑛2 were 

shown for the entire positive frequency range, consisting the first (1 ≤ 𝑛 ≤ 6) and second (7 ≤ 𝑛 ≤
12) half. Comparing 𝑥𝑛𝑔1(𝑡) and 𝑥𝑛𝑔2(𝑡), the trispectra clearly show different values for 𝑚4 in the 

first half of the frequency range, where 𝑥𝑛𝑔2(𝑡) has kept its non-Gaussianity (original phases) and 

𝑥𝑛𝑔1(𝑡) just shows the trivial data of a Gaussian distributed random signal (equally distributed 

phases), which give no further information about non-Gaussianities. Same observation can be made 

for the second half of the frequency range at the respective frequency bands. Simply put, the greater 

values in the trispectra allow a location of non-Gaussianities related to certain frequency bands. 

3.2 Fatigue analysis of a vibration system 

Both non-Gaussian signals 𝑥𝑛𝑔1(𝑡) and 𝑥𝑛𝑔2(𝑡) where used as an excitation for a vibration sys-

tem in order to determine response signals 𝑦𝑛𝑔1(𝑡) and 𝑦𝑛𝑔2(𝑡) (see Fig. 1). Further, these respons-

es (also in terms of excitations) were interpreted as stress signals to be able to perform a fatigue 

analysis. In order to make such a fatigue analysis independent from a specific vibration system, the 

Fatigue Damage Spectrum (FDS) [15] is typically used. It is based on a single degree of freedom 

vibration system with a variable natural frequency 𝑓𝑜 which is supposed to model an arbitrary be-

haviour of an unknown vibration system. It enables a comparison of equivalent fatigue loads 𝑠𝑒𝑞 of 

the vibration response 𝑦(𝑡) caused by different excitations 𝑥(𝑡) (see Fig. 4). The corresponding 

equation of motion is given in Eq. (17) (with mass 𝑚, stiffness 𝑐 and damping 𝑑). These parameters 

b) c) 

e) f) 

𝑥
𝑛

𝑔
1
( 𝑡

) [
𝑚

𝑚
] 

𝑛
2
 

𝑛1 𝑛1 

𝑛1 𝑛1 

𝑛
2
 

𝑛
2
 

𝑛
2
 

𝑡 [𝑠] 
|𝑚4| 

[𝑚𝑚4] 

𝑡 [𝑠] 

d) 

a) 

𝑥
𝑛

𝑔
2
( 𝑡

) [
𝑚

𝑚
] 

|𝑚4| 
[𝑚𝑚4] Signal 𝑥𝑛𝑔1(𝑡) 

Signal 𝑥𝑛𝑔2(𝑡) 

𝑚4,𝑛𝑔1(𝑛1, 𝑛2, 𝑛3=-4) 

𝑚4,𝑛𝑔2(𝑛1, 𝑛2, 𝑛3=-4) 

𝑚4,𝑛𝑔1(𝑛1, 𝑛2, 𝑛3=-9) 
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𝑐, 𝑑 and 𝑚 are reduced to the damping ratio 𝐷 (further exemplarily set to 3%) and the natural angu-

lar frequency 𝜔𝑜. 

𝑦̈(𝑡) + 2𝐷𝜔0𝑦̇(𝑡) + 𝜔𝑜
2𝑦(𝑡) = 𝑥̈(𝑡);   with: 𝜔0 = √𝑐 𝑚⁄ ;   𝐷 =

𝑑

2𝑚𝜔0
 (17) 

These response signals 𝑦𝑛𝑔1(𝑡) and 𝑦𝑛𝑔2(𝑡) are fur-

ther used for a fatigue analysis (see Fig. 1), which 

means evaluating load spectra by either counting 

(RFC) or estimation (DK) techniques and using PM as 

damage accumulation theorem (exemplarily with the 

Miner Exponent 𝑘 = 5  and endurance cycle number 

𝑁𝑒𝑞 = 1) to assess equivalent fatigue loads 𝑠𝑒𝑞 . It is 

important to know that the RFC is a fatigue cycle 

counting method, not an estimation method, and hence, it is not bounded to any limitation of the 

distribution of 𝑦(𝑡). Hence, the RFC is typically interpreted as the reference. The described proce-

dure is evaluated several times with different natural frequencies 𝑓0 (here for 0 < 𝑓0 < 600 Hz) to 

make the fatigue analysis independent from an individual vibration system. 

 

Figure 5: FDS derived from non-Gaussian vibration loads 𝒙𝒏𝒈𝟏(𝒕) and 𝒙𝒏𝒈𝟐(𝒕) by using RFC and DK for 

load spectra evaluation, with Miner Exponent 𝒌 = 𝟓 and endurance cycle number 𝑵𝒆𝒒 = 𝟏 

The FDS depicted above shows the fatigue analysis of a variable vibration system, when being 

subjected to the non-Gaussian random vibration loads 𝑥𝑛𝑔1(𝑡) and 𝑥𝑛𝑔2(𝑡). The fatigue analyses, 

which were evaluated by RFC from 𝑦𝑛𝑔1(𝑡) and 𝑦𝑛𝑔2(𝑡) in time domain count as a reference. Since 

both non-Gaussian vibration loads share the same PSD, they also produce the same PSD-based fa-

tigue analysis using the DK estimator. It is clearly seen, that the PSD-based fatigue analysis under-

estimates the structures fatigue, expressed as equivalent fatigue load. Since the PSD is only depend-

ing on the magnitude of Fourier coefficients, phases have no influence. Nevertheless, phases are 

highly important for the characterisation of non-Gaussian signals in frequency domain. It is obvi-

ous, that the two compared non-Gaussian random vibration signals cause different fatigue loads on 

the vibration system depending on its natural frequency; their kurtosis values are not able to indi-

cate that deviation. Consequently a single kurtosis value is not sufficient for a clear characterisation 

of non-Gaussianity. The proposed higher order spectral analysis makes these differences visible. 

The presented method can be applied to long time signals as they usually appear in the area of fa-

tigue analysis and can help to avoid underestimation of fatigue loads. The results also prove that a 

reliable fatigue assessment has to take into account that higher order statistical moments have a dis-

tribution in the frequency range of the analysed signals. 

4. Conclusion 

This paper has shown that a single kurtosis parameter is insufficient for characterising the deviation 

of a non-Gaussian random signal to its corresponding Gaussian signal. It was pointed out that the 

kurtosis can be represented by central moments and hence has a distribution in frequency domain. 

An adequate characterisation of a non-Gaussian vibration load can be achieved by the use of higher 

order spectra. In this paper, the application of trispectra has helped to characterise the impact of 

natural frequency 𝑓𝑜 [Hz] of vibration system 

Fatigue Damage Spectrum (𝑘 = 5, 𝑁𝑒𝑞 = 1) 
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certain non-Gaussian vibration loads onto the fatigue load of a vibration system. In addition, since 

random vibration loads appear to be very long in time, a very efficient and robust method for the 

calculation of higher order spectra was presented. The results cannot yet serve as a complete solu-

tion to the problem of non-Gaussianity in the area of fatigue loads but they offer a new powerful 

analysis tool for a better understanding and precise characterisation of non-Gaussian signals. Fur-

ther steps will be necessary to build reliable tools for this class of fatigue problems. 
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