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I. INTRODUCTION

It is well known that noise control in many cases is to be performed by aid of measure-
ments and that in practice noise occurs in the form of continuous sound signals fluctuating
randomly. For this reason it is useful to take into account the uncertainties, which are
inevitably inherent to any evaluation index describing those signals. Additionally this may
lad to a better understanding of the structural features of the stochastic process depicted
by the observed signal. Further possible consequences are also adequate applimtions.
In the following treatment we will concentrate on the accuracy of the quantile (100q%
level), a noise evaluation index frequently used. In a preceding paper the main basic
features of this topic already have beenreported [1]. But there the calculation procedure
for the bracket confidential interval of the quantile was restricted to the case that, for
simplicity, a local linearimtion of the cumulative probability distribution function is
justified. In the following the procedure is extended to the general case of a cumulative
distribution function having an arbitrary curvature.

2. SIGNAL PROCESSING FOR THE EVALUATION OF THE VARIANCE

As has been shown in (1], the quantile’ confidence interval is accessible through the
variance of the partition which is imposed to the observed signal‘s cumulative distribution
by a fixed reference level. This variance can be estimated by -

 

Varq = —;— (“team (In)

13333. i r .
= ? y. (vi+v5) = F qiqi<v3+v© (me)

(see also [1]). In eq. (1) denote: w, u: Indices for crossing-up and erasing-down
respectively; ’1': Measurement time interval; n: Observed number of independent crossings-.
up (or crossings-down); v: Observed man of the crossing-up (or crossing-down)
frequency; ti: Observed partition parameter, i. e. estimate of q; 5: Standard deviation;
9“ = su/fi: Coefficient of variation; 5: Mean of the single continuous ndershoot time
intervals; denotions for w are corresponding to u. EA]. (1) is valid if there are, at least
approximate stable conditions i. e. v“, vw s l and n 3 5 [I]. Then. as is well known, the
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Central Limit Theorem [2] holds approximately and a bracket confidence interval of the

partition q can be calculated by

qu—fi = fi—qr = tr;i—u12IVartt]"’- (2)

In eq. (2) denotesqu, q]: Upper and lower limit of the confidence interval; t: Quantile of

student's distribution [2]; f = n — l; l - a: Confidence coefficient [2].

It is to be noted that in case of a pure periodic signal the single crossing-up (= overshoot)

time intervals equal each other. Hence there is no variance, i. e. sw = 0, as expected. The

same is evidently valid for the crossing—down interval.

3. GENERAL PROCEDURE FOR DETERMINING THE QUANTILE

CONFIDENCE INTERVAL

In [1] only the simple case is considered that a local linearization of the cumulative

distribution function due to a small curvature within the spread of q is justified. On the

other hand a procedure to determine the quantile confidence interval in general can be

developed as follows: '

If a single measurement is repeated under the same stationary conditions. the ensemble of

the random samples of the cumulative distribution arranges as depicted schematically in
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Fig. 1. Definitions and relations used to evaluate the confidence interval in the general

case of arbitrary curvature of the cumulative probability distribution function

(schematically).

In a)' denote: xq: Fixed reference level; q(x, 3'): Samples of the cumulative distribution

function; 3': Stochastic ensemble parameter; q(x ): Expectation value associated to x“.

In b) denote: an): Estimate of the (expected; cumulative distribution; q“(q): Inverse

function of am. i. e. the function x(q). Further explanations see text.
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Fig. la). The points of intersection on the vertical axis x = Xq are approximately normally
distributed. The intersections along the horizontal line q = q(xq) indicate the quantile
samples.
Since the slope of the cumulative distribution is always positive, it is evident that the
number of intersections of the field of sample curves, for instance with the line
q = q(xq) = const. for x < it.I is the same as with the line it = x = const. for
q > q(x . Thus the sample fraction below an arbitrary value x; on the q‘tquline is the
same as e fraction above q(xq) along the line rt = x;.
The analogue is valid for the opposite quadrant. Therefrom one can derive that once the
limits of a (symmetric) bracket confidence interval for q, dependent on x, are established.
the locations of the confidence limits of an arbitrary quantile also are determined.
This procedure is shown in Fig. 1b): As a function of x the estimator 600 of the partition
and its upper and lower confidence limits quot: n. a) and mm It, a), dependent also on
the parameters n and a, are depicted in a diagram or stored in a computer. It is to be
emphasized that this is already achievable by running the measurement over the time
interval T only once and then applying the procedures described in the second chapter
(provided that there is enough data storage capacity). Then, for a qiven q, the measured
quantile itself follows in the common way from the inverse of (‘10:). The upper and lower
confidence interval limits result in an analogous manner from the inverse functions (see
Fig. lb)):

Xu(q:n,n) = qi"(q;n.a) (3a)
xr(q;n.a) = qa‘(q:n.a)- _ (31’)

From Fig. lb) it is evident that if the slopes do not change considerably within the interval
XI 5 x 5 xu,‘ the linearization as already used in eq. (8) in [l] is convenient.

By aid of the procedure underlying eq. (3) the statistical stability as mentioned in [3] with
regard to sound level quantifies can be expressed and judged quantitatively. Also the
question for the lowest maningful LION; background level (see [4]) can principally be
answered quantitatively as well. A more directly applimble tool to check for mtistiml
stability. at least within the measurement time interval, already has been established by the
minimum measurement time criterion, derived and presented by eqs. (6) and (7) in [1].

4. A VARIANCE RELATION BETWEEN THE QUANTILFS AND
THE MEAN OF A SIGNAL

From Fig. la) easily can be inferred that
I

m) = I x(q: r) dq (4)
0
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is a sample of the mean observed signal amplitude. Let Ax(q;'f) denote the deviation of

the single cumulative distribution function from the corresponding expectation function

E{x(q; D} ='i(q). Then the man of (Ax(q; “)1 taken over the stochastic variable g- is

the quantile variance. Application of the Cauchy-Schwarz inequality leads to the relation
1

[Varirt s [[Varx(q)l"* dq (5)
0

for the variance of the time average i of the signal, taken over T. The consequence of

eq. (5) is that if the quantiles measured tum'out to be statistically stable over nearly the

total admitted q—variable space S = {q: 0 S q S l) and this at a given acceptable high

confidence level (see eq. (7) in [1]), then the mean of the signalrtaken over the

measurement interval also can be regarded statistically meaningful. This, together with the

experimental results in [l] and in the following, confirms the statement in [5] that the

adoption of (traffic noise) measurement time intervals about 15 — 20 minutes ‘nusually

provides good results“.

5. APPLICATION TO THE SEPARATION OF DIFFERENT SOUND
msrrY CONTRIBUTIONS

5.1 Basic steps of the procedure
The method presented above can be applied for instance to separate with a verifyable

accuracy the constant sound level of an interesting source from a simultaneously present

randomly fluctuating environmental noise with a comparable or even higher level. Similar

residual noise correction problems have already been hated by other authors using other

signal processing theories like in [6] and [7]. It is presumed in our case for simplicity that

the sound source to be assessed can be switched off. This interesting steady noise signal

can be calculated by an appropriate difference based on the additivity property of physical

sound intensity. The difference of the states with and without the interesting steady source

is performed by starting from approximately the one sound level, i. e. quantile, which

shows the smallest variance of sound intensity. This level is evidently very nar to the

lower edge of the distribution function. The chosen partition parameter value q for the

quantile is to be maintained strictly during the whole evaluation.

As is known from statistics the resolution limit of the procedure is determined by the

variance of the sound intensity difference of the quantiles. Here this variance is about twice

the intensity variance of the environmental random noise due to the practically

nonfluctuating source to be separated acoustically. Taking this into account, then in terms

of the symmetric confidence interval VI on the sound intensity antilog scale of the

reference quantile, the sound pressure level which indicates the resolution limit is

determined by

1m,I = 10lg% dB. (6)
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The condition underlying eq. (6) is, that to achieve still a significant separation. the lower
confidence interval limit of the quantile sound intensity difference is to be above zero.

5.2 Simulation experiment
To test whether the method described above works also in practice, a simulation
experiment was performed. As the randomly fluctuating environmental sound signal the
noise emitted from a nearby highway was taken. To this signal some different constant and
known sound levels have been superimposed separately in the laboratory. Then these levels
were regarded to be unknown and reevaluated by the procedure described above. '11Ie
characteristic data for that are presented in Fig. 2 and Table l.
The total recording time interval over 26 minutes was subdivided into three parts denoted
by I]. 11 and 12 which have the ratios 1:2 :1 in duration. During interval 11 the
additional source levels constant in time were superimposed successively. For comparison
with 11 the intervals I] and 12 stayed unaltered to serve as the switched off state.
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Fig. 2. Simulation experiment. Environmental-signal propenies and resolution limits for
the constant signal source levels to be separated.

Confidential coefficient: l - or = 0,8.

Reference level: 1.95; for time interval 1: 196 = 65,5 dB(A).

level 1: Resolution limit atWif signals in intervals land 11 are taken as occurred
’ i. e. slightly non-stationary.

Leve12: Resolution limit at man if the signal would have been permanently
stationary.

1..eq = 78,5 dB(A)-.
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The relatively great difference between the confidence intervals for l and II (see Fig. 2) is

due to an observable weak drift which started in 12. This demonstrates that the system, as

far as described by the eqs. (1) - (3), reacts quite sensitive on the fact, that within the total

interval 1 the signal observed cannot be regarded as stationary in the strict sense. This was

also clearly to be seen by the level recorder output. On the other hand within interval] [1

_ no deviations from stationarity could be observed. The confidence limits evaluated for

1.9501) = 66,9 dB(A) are in positions +l,0 and —O,7 dB(A) to this percentile.

The results of the simulation experiment are arranged in Table l. The main result is that

the confidence intervals of the levels evaluated from experiment in all cases include the

true level of the single steady source. The realistic rmlution level 1 at 64,5 dB(A)

represents approximately the I.” of the 26 minutes total measurement time for I + II.

ALWS ALM d+ d- ’
dB(A) dB(A) dB(A) dB(A)

-l,3 +2,0 +4,3 -3,0

+1,7 +l,0 +2,6 —1,4

+6.7 +O,7 +0.2 -O,3

 

Table 1. Results of the simulation experiment for separation of a constant source level.

ALF“,s = Positions of the "true" single source levels, imposed Successiver during time

interval II, with respect to the reference level I.“ = 65,5 dB(A) for time

interval I.
Aans = Difference between evaluated level and true level

d+ - Distance of the upper confidence limit of the evaluated level to the true level.

d _ Distance of the lower conf. lim. respectively.

3

What resolution in comparison with this can be achieved by a sound level separation on the

basis of an Leq-difference?
One example of noise from nearby intraurban traffic, i. e. similar to the simulation

experiment demonstrated here, is reported in [I]. Fig. 2a) in [ll and the application of

unequality (5) let suppose a realistic confidence interval for the Le.l of about 2dB.

Applying eq. (6) this leads to an LEE-resolution level which is roughly 4 dB lower than the

reference sound signal. In case 0 the the signal shown above in Fig.2 this yields a

resolution level of 74.5 dB(A). So the method demonstrated here makes possible a

resolution improvement of about 10 dB in this example.
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0n the basis of the considerations made above the resolution limit, when applying the
quantile, also can be estimated for other examples of real noise signals. ln [1], Fig. 2a) the
quantile having minimum sound intensity variance is I.“ = 49 dB(A), with a sound level
confidence interval V = 2 dB(A). This is about the same as for = 67 dB(A). Thus in
this example the new method improves the resolution by more than 5 dB.
For the second example in [1] Fig. 2b) ambient noise in a rural environment during night'
V = 0,3 dB(A) .is observed for the optimal quantile L75 = 30 dB(A). This implies a
resolution limit of L = l7 dB(A). is about 32 dB(A). The inequality (5) yields an I.“-
confidence interval not grater than ut 2 dB(A). This gives a resolution limit for 1.1,q of
about 28 dB(A). Thus the resolution improvement is at least 10 dB(A) for this example.

The work reported here and in the preceding paper [1] is in an early stageand so has been
primarily focused on its basic methodological aspects. Accordingly there remain some
more sophisficated aspects. to be discussed, for instance the explicite proof of stochastic
independence and its detailed preconditions or the influence of periodicity superimposed to
the pure stochastic signal component.

6. SUMMARY

A method is developed to evaluate the confidence interval of quantiles (percentiles)
determined for the cumulative distribution function of a measured continuous stochastic
signal. There are no restrictions to be imposed on the distribution function. 0n the basis of
the quantile variance determined over the whole cumulative probability distribution an
upper limit for the variance of Latl of the observed random signal can be calculated. The
possible application of the procedure in the practice of environmental protection is
demonstrated by a short term separation of a sound source having a constant level from
additionally present randomly fluctuating environmental noise with comparable or even
higher levels. In comparision with the Leq as a tool for separation of the noise
contributions from different sources the applitztion of the presented method makes possible
a resolution improvement between about 10 dB and slightly more than 15 dB, the actual
value depending on the individual case.
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