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The collective dynamics of a chain of coupled pendulums is investigated under simultaneous ex-
ternal and parametric excitation. The purpose of this study is to track the frequency response of
the considered system in term of bifurcation topology with respect to the excitation amplitudes
and structural imperfections. The equations of motion are derived and solved using the harmonic
balance method coupled with the asymptotic numerical method. Several numerical simulations
are performed in the case of six coupled pendulums in order to analyze the complexity of the fre-
quency responses in terms of stability and bifurcation topology. Remarkably, wideband responses
are displayed thanks to simultaneous excitations compared to the case of a single excitation.
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1. Introduction

Nonlinear periodic oscillators have been used in a wide range of applications extending from
chains of coupled pendulums [1] and Josephson junction arrays [2] to gravitational and high-energy
physics models [3, 4]. For instance, Ikeda et al. investigated the behavior of intrinsic localized modes
(ILMs) for an array of coupled pendulums subjected to horizontal [5] and vertical [6] sinusoidal
excitation.

The array of coupled pendulums was recently modeled and studied by Bitar et al. [7] and the
effect of modal interactions has been investigated. Moreover, the excitation of several modes lead to
multimodal solutions [8] obtained for three coupled pendulums. For a large number of oscillators,
Ivancevic et al. [9] transformed the equations of motions of a coupled oscillator to one Sine-Gordon
equation and reviewed the essential dynamic of a nonlinear excitation in living cellular structures.
Khomeriki et al. [10] studied the tristability of a chain of pendulums driven periodically in one end
and free at the other end. There are two types of excitation: external excitation [11, 12] and parametric
excitation [13, 14] (excitation of the base). The first type of excitation was simulated by Braiman
et al. [11] on a chain of coupled damped pendulums with a free end boundary condition. The authors
showed that when the chain is perfectly periodic, the oscillations become chaotic. However, their
motion becomes ordered when imperfections are added. The effect of imperfection was also tested
numerically [12] on an array of 128 pendulums. The parametric excitation was studied numerically by
Alexeeva et al. [14] and experimentally by Chen et al. [13]. The authors showed that a high positive
imperfection level can extend the region of stability of the system while a negative imperfection
is more exposed to oscillatory instabilities. Also, array of coupled pendulums under external and
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(a) (b)

Figure 1: Array of coupled pendulums under simultaneous parametric and external excitations.

parametric excitation is used to study the intrinsic localized modes[15]. The use of two excitations
may improve the existence and stability regions of solitons.

In this paper, we derived the equations of motion describing the nonlinear dynamics of an array of
coupled pendulums under simultaneous external and parametric excitations. the Harmonic Balance
Method coupled with Asymptotic Numerical Method is used to transform the system of equation to
a Fourier series and determine the nonlinear frequency response. By comparing the obtained results
of two excitations to those with one excitation, we show that simultaneous excitations can extend the
stable region without shifting the frequency response or breaking the symmetry of the array.

2. Design and model

The considered system, depicted in Figure 1, is composed of an horizontal axle A. Along this
axle, at equally spaced intervals, there are Npen equal pendulums. Each pendulum consists of a rigid
rod, attached perpendicularly to the axle, with a mass m at the end. At rest, all the pendulums point
down the vertical. a is the distance between two pendulums, g is the gravity acceleration, θn is the
angle between the nth pendulum and the downward vertical, k2 is the linear torque constant and k4 is
the cubic torque constant. By neglecting the mass of the rigid rod, all the pendulums have the same
moment of inertia I = ml2n, where ln is the length of the nth pendulum. The considered system is
excited by two forces at the drive frequency ω. The first one is an external force Fcos(ωt) applied
to one or several pendulums, and a parametric force 4Aeω

2cos(2ωt) due to the base excitation of the
system. The kinetic and potential energy of the system can be written as:

V =
∑
n

1
2
k2(θn − θn+1)

2 + 1
2
k2(θn − θn−1)

2 + 1
4
k4(θn − θn+1)

4 + 1
4
k4(θn − θn−1)

4

−mgl(sin (θn) + Aecos(2ωt))
(1)

T =
∑
n

1

2
mv2n (2)

The potential energy V consists of two parts: the strain energy due to the elongation of the spring
and the gravitational potential energy. T is the kinetic energy due to the velocity vn of the moving
mass, where

vn =
−−→
ṙOA + ~ω ×−−→rAP (3)
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where
−−→
ṙOA = Aeωesin(ωt)ĵ ~ω = θ̇nẑ (4)
−−→rAP = l(sin (θn) î+ cos(θn)ĵ) (5)

we applied Lagrange equation
d

dt

(
∂L

∂θ̇n

)
− ∂L

∂θn
= Qn (6)

with L = T − V and Qn is the non-conservative generalized external forces applied to the nth

pendulum (in this case Qn is the sum of the friction force and the external excitation). Hence, the nth

pendulum’s equation of motion is determined as follows:

ml2n
d2θn
dt2

+ αln
dθn
dt

+ k2 (2θn − θn+1 − θn−1) + k4
(
(θn − θn−1)

3 + (θn − θn+1)
3) =

−mln [g + 4Aeω
2
e cos (2ωet)] sin (θn) + fcos(ωet); n = 1, 2, .., N

(7)

In our case we choose a fixed boundary conditions (θ0 = 0 and θN+1 = 0). By expanding sin(θn) in
Taylor series up to the third order, Equation (7) can be written as:

ml2n
d2θn
dt2

+ αln
dθn
dt

+ k2 (2θn − θn+1 − θn−1) + k4
(
(θn − θn−1)

3 + (θn − θn+1)
3)

= −mln [g + 4Aeω
2
e cos (2ωet)] (θn − 1

6
θ3n) + fcos(ωet); n = 1, 2, .., N

(8)

Equation (8) presents a system of Duffing oscillators coupled respectively with linear and nonlinear
coefficients k2 and k3 subjected to external and parametric excitations. To solve the obtained system
of nonlinear equations we used the Harmonic Balance Method (HBM) and the Asymptotic Numerical
Method (ANM), described in the next section.

3. Solving procedure

To study the colective dynamics of the array of coupled pendulums, we solve Equation (8) and we
plot the frequency response of the solution amplitude. To do so, we rewrite the system nonlinearities
into quadratic terms. Cochelin and Vergez [16] used this technique in order to follow the periodic
solutions of dynamical systems when a control parameter is varied. Equation (8) is transformed into
a quadratic one and the unknown variables are decomposed into truncated Fourier series using the
HBM. We derive the algebraic system and we solve it using the ANM. The latter has been used
recently to investigate pull-in instability in circular capacitive micromachined ultrasonic transducers
[17].

3.1 Quadratic recast

Let us consider an autonomous system of differential equations:

Ẏ = f(Y, λ, t) (9)

where Y is a vector of unknowns, f is a smooth nonlinear vector valued function and λ is a real
parameter. The dot denotes the derivative with respect to time t. First, we transform the system (9)
into a new system where the nonlinearities are quadratic, which can be written as follows:

m
(
Ż
)
= c (λ, t) + l (Z) + q(Z,Z) (10)

with Z is the vector of unknowns, c(λ, t) is a constant vector with respect to Z, l(Z) is the linear
vector and q(Z,Z) is the quadratic vector. To transform the system (9) into (10) we need to predefine
some variables:

un = θn vn = θ̇n wn = θ2n xn = θ3n
a = cos(2ωt) b = ω c = ω2 = b2 d = ω2 cos (2ωt) = c× a (11)
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The vectors m(Ż), c, l(.) and q(., .) become :
m(Ż) = [u1, ..., uN , v1, ..., vN , 0, ..., 0]

t

c(t) = [0, .., 0︸ ︷︷ ︸
N

,
f

ml2n
cos(ωt), ..,

f

ml2n
cos(ωt)︸ ︷︷ ︸

N

, 0, .., 0︸ ︷︷ ︸
N

, a, 0, 0, 0]t

l (Z) = [v1, .., vN︸ ︷︷ ︸
N

, f1, .., fN︸ ︷︷ ︸
N

, w1, .., wN︸ ︷︷ ︸
N

, x1, .., xN︸ ︷︷ ︸
N

, a, b, c, d]

where fi = −µvi − ω2
0ui − kL (2ui − ui+1 − ui−1) ; i = 1, .., N

q (Z,Z) = [0, .., 0︸ ︷︷ ︸
N

, g1, .., gN︸ ︷︷ ︸
N

, u1u1, ..uNuN︸ ︷︷ ︸
N

, w1u1, .., wNuN︸ ︷︷ ︸
N

, 0, 0, bb, ca]t

with gi = −γuiwi − δ
(
uid− 1

6
xid
)
− kNL(ui − ui−1)

3 − kNL(ui − ui+1)
3 ; i = 1, ..N

we define the variables as:
µ = α

mln
, ω2

0 = g
ln

, γ = −ω2
0

6
, δ = 4Ae

ln
, kL = k2

ml2n
, kNL = k4

ml2n
The number of equations to implement is Neq = 4Npen + 4 where Npen is the number of pen-

dulums, therefore the length of the vectors c, l and q is equal to the number of equations Neq and
Z = (u1, ..., uN , v1, ..., vN , w1, ..., wN , x1, ..., xN , a, b, c, d)

3.2 The harmonic balance method (HBM)

In order to apply the HBM on our system, Y (t) is decomposed into a truncated Fourier series with
H harmonics:

Z (t) = Z0 +
H∑
k=1

Zc,k cos (kωt) + Zs,ksin(kωt) (12)

By collecting all the components of the Fourier series in a vector U , the unknown variables to deter-
mine become the components of the vectors U .

U =
[
Zt

0, Z
t
c,1, Z

t
s,1, Z

t
c,2, Z

t
s,2, . . . , , Z

t
c,H , Z

t
s,H

]t (13)

Therefore, the size of U is equal to (2H + 1) × Neq. Where Neq represents the number of equations
of the system (10). Replacing Equation (12) into Equation (10), the system becomes:

ωM (U) = C + L (U) +Q(U,U) (14)

The new operators M(U), C, L(U) and Q(U,U) depend only on the operators m(Ż), c(t), l(Z) and
q(Z,Z) of Equation (10). The final system (14) contains (2H+1)×Neq for (2H+1)×Neq unknowns
U plus the angular frequency ω and the continuation parameter λ.

3.3 The asymptotic numerical method (ANM)

Applying HBM, a new system is obtained:

R(U) = 0 (15)

where R∈ RNv and U = [U t, λ, ω]∈ RNv with Nv = (2H + 1) × Neq + 2. The final system (13) is
quadratic with respect to U and ω. Thus, the application of the ANM is quite straightforward. We
obtain:

R (U) = L0 + L (U) +Q(U,U) (16)

Where L0, L(U) and Q(U,U) are respectively constant, linear and quadratic vectors.
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Figure 2: Frequency response of the harmonic 1 ; 3 and 5 of one pendulum.

4. Results and discussion

As a first step, we use the HBM and ANM to plot the frequency-response of one pendulum. Figure
2 represents the amplitude of the harmonics 0,1,3 and 5 of the pendulum, where the system is excited
using a parametric force. The system parameters are m = 0.03 kg; l = 0.25 m; Ae = 0.0029 m;
k2 = 0.02 Nm; k4 = 0.001 Nm and α = 0.001 Nm−1s−1. The equation of motion associated to one
pendulum is determined as follows:

ml2 d
2θ1
dt2

+ αl dθ1
dt

+ k2 (2θ1 − θ0 − θ2) + k4((θ1 − θ0)3 + (θ1 − θ2)3)) =
−ml[g + 4Aeω

2
ecos(2ωet)](θ1 − θ31/6) + fcos(ωet)

(17)

or in canonical form:
d2θ1
dt2

+ µdθ1
dt

+ kL (2θ1 − θ0 − θ2) + kNL((θ1 − θ0)3 + (θ1 − θ2)3)) =
−[ω2

0 + δω2
ecos(2ωet)](θ1 − θ31/6) + Fextcos(ωet)

(18)

where µ = α/ml ; kL = k2/ml
2 ; kNL = k4/ml

2 ; δ = 4Ae/ml
2; Fext = f/ml2 and ω0 =√

g/l presents the natural frequency of a free simple pendulum, however in our case the pendulum
is coupled to the frame from the two sides (θ0 = θ2 = 0). Therefore, the natural frequency of the
pendulum is ωp =

√
ω2
0 + 2kL.

In all simulations, the solid and dashed lines represent the stable and unstable steady-state solu-
tions, respectively. In Figure 2, the amplitude of the first harmonic u1H1 dominates the other har-
monics. Therefore, the solution amplitude of the equation of motion is almost equal to the value of
u1H1.

In order to investigate the effect of adding an external force, we plot the frequency-responses of an
array of six pendulums under different types of excitations. The equation of motion (8) of the system
with 6 degrees of freedom can be written as:

Mθ̈ +Bθ̇ +Kθ +G (θ, t) = F (19)

where

M =

 ml2 0
. . .

0 ml2

 ;B =

 αl 0
. . .

0 αl

 ;K =


mgl + 2k2 −k2 . . . 0

−k2
. . .

...
...

. . . −k2
0 . . . −k2 mgl + 2k2

 ;F =

 f
...
f


Where M represents the mass matrix, B the damping matrix, K the stiffness matrix with dimen-

sion N ×N and G contains the nonlinear terms and F is the excitation vector with dimension N × 1.
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Table 1: Comparison between different types of excitations

Parametric Parametric with imperfection Simultaneous excitations
Number of branches 3 7 6 3 6 3

Frequency shift with respect
to parametric excitation - shifted 7 not shifted 3

Symmetry of the system symmetric 3 not symmetric 7 symmetric 3

The eigenfrequencies ων and the eigenvectors θν of the corresponding linear system can be computed
by solving the following eigenvalue problem:(

K − ω2
νM
)
θν = 0; ν = 1, .., N (20)

The frequency response curves bend to the left and exhibit soft-spring characteristics beyond the
critical Duffing amplitude [18, 19, 20, 21, 22] due to the negative sign of the cubic nonlinearity. Figure
3(a) presents a frequency response of the system, perfectly periodic, (19) under parametric excitation
(ln = l0 ; n = 1, · · · , 6). We can notice that pendulums 1 and 6, 2 and 5, 3 and 4 vibrate at identical
amplitude due to the symmetry of the structure. Moreover, we notice that the resonant stable solution
is limited to a three frequency range [6.39 6.47], [7.42 7.52] and [8.52 8.67] rad/s while the trivial
solution θn = 0 is elsewhere. The number of the resonant range is equal to three due to the mode
of excitation (we excite all the pendulums with the same force). In order to break the symmetry of
the system, an imperfection is introduced into one pendulum. Figure 3(b) and Figure 3(c) display
the frequency responses of the system parametrically excited when an imperfection is introduced by
increasing by 10% the length of the pendulums located in the 2nd and the 3rd position,respectively.
Comparing this configuration to the previous one, we remark that the system loses its symmetry and
each pendulums has a specific frequency response. In this case, the number of resonant regions and
stable solutions increase.

In Figure 3(d), the system is simultanesously excited with parametric and external forces. We per-
form numerical simulations for the case of double excitations: the parametric excitation was applied
to the whole system and a small external force was applied on the 1st pendulum. Remarkably, new
branches are added approving a non-zero solution. Compared to the previous cases, we can see the
existence of new stable branches and the structure still symmetric. These results are summarized in
Table. A quantitative comparison of the two last configurations requires a profound investigation.

5. Conclusion

The dynamic behavior of an array of nonlinear oscillators subjected to different types of exci-
tations (external, parametric and combination of both) has been modeled. The collective dynamics
of a chain of coupled pendulums has been numerically investigated while comparing three different
configurations. We showed that the introduction of imperfections in the system increases the resonant
regions but it breaks the system symmetry, while remarkably, the same property was obtained in a
symmetric fashion when the perfectly periodic system is subjected to simultaneous parametric and
external excitations. Future works concern a quantitative comparison between the performances of
each configuration and the robustness analysis of the resulting dynamical behavior.
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Figure 3: Frequency responses of six coupled pendulums. (a) parametric excitation, (b) parametric excitation
with an imperfection in the 2nd pendulum (l2 = 1.1l0), (c) parametric excitation with an imperfection in the 3rd

pendulum (l3 = 1.1l0), and (d) simultaneous excitations (the external force is applied on the first pendulum).
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