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This paper presents the results of experimental tests carried out on a new inertial actuator that can 

be used to implement a velocity feedback loop to reduce the flexural vibration of flexible struc-

tures. Classical inertial actuators used in vibration control systems incorporate coil-magnet linear 

motors, with the magnet suspended on soft springs and the coil attached to the base. With this 

configuration there are two aspects that limit the effectiveness of the feedback vibration control 

system. Firstly, the inherent dynamics of the springs-magnet system limits the stability, and thus 

control performance of the feedback loop. Secondly, when exposed to shocks, the actuator suffers 

undesired stroke saturation effects, which may also lead to instability of the feedback loop. The 

inertial actuator presented in this paper includes an additional flywheel element that increases the 

inertia of the proof mass without increasing the weight of the suspended mass. As a result, the 

fundamental natural frequency of the actuator could be lowered without increasing the static dis-

placement of the suspended mass. This improves the stability of the feedback loop, both by in-

creasing the feedback gain margin and by improving the robustness to shocks. This paper presents 

the measured frequency responses functions that characterise the electro-mechanical response of 

a flywheel actuator prototype, which are contrasted with simulations obtained from a simplified 

lumped parameter model. The experimental results agree well with the simulation results and 

confirm that the new flywheel actuator can be effectively used to implement a more robust veloc-

ity feedback loop. 
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1. Introduction 

This paper presents the experimental tests carried out on a new inertial actuator equipped with a 

flywheel element, which was introduced in Refs. [1-3] for the implementation of more robust decen-

tralised velocity feedback loops for vibration control of flexible structures. The electromechanical 

parameters of the tested flywheel inertial actuator are contrasted with simulation results obtained from 

a simplified mathematical model (see Refs. [1,3]) and compared with those of classical inertial actu-

ators.  

Elliott et al. [4], showed that flexural vibration of distributed two-dimensional thin structures can 

be effectively diminished with decentralised feedback systems using collocated point force actuator 

and velocity sensor pairs, which produce the so-called sky-hook damping effect [5]. As discussed in 

Refs. [6-14], a point force excitation can be obtained from inertial (also called proof mass) actuator, 

which is composed by a mass suspended on a spring with in parallel an electromechanical transducer. 

Normally, a coil–magnet transducer is used, which can withstand the large stroke necessary to pro-

duce the desired levels of control force [14]. However, the internal dynamics of the inertial actuator, 

i.e. its resonant response, makes the feedback control loop only conditionally stable [12]. In general, 

to mitigate this problem, the inertial actuator should be designed with a very low fundamental reso-

nance frequency. However, this solution tends to enhance the static displacement of the proof mass 

and this could lead to stroke saturation effects, which may also cause instability problems [10,15-18]. 
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All these stability issues become even more severe when multiple feedback loops are implemented 

[19-21]. Therefore, several approaches have been investigated over the years to alleviate these prob-

lems. For example the implementation of internal displacement, velocity and force feedback loops 

have been studied to minimise the stroke at the fundamental resonance of proof mass actuators  

[22-24]. Alternatively various types of feedback controllers have been considered, which, in general, 

also aim to compensate the second order dynamics of the proof mass actuator [25-30].  

This paper considers the implementation of a new proof mass actuator with a flywheel element  

[1-3], which resembles the mechanical element called “inerter” [31,32]. The flywheel produces an 

apparent mass effect that increases the inertia of the suspended mass, though without increasing its 

weight and thus without degrading the static displacement properties of the actuator. Therefore the 

new actuator can be designed with relatively low fundamental resonance frequency and with rather 

low static displacement, so that it can be effectively used to implement stable and robust point velocity 

feedback loops.  

This paper presents the initial tests carried out on a classical coil-magnet proof mass actuator that 

can be equipped with a rocker arm having movable lumped masses, whose dynamic effect resemble 

that of a flywheel element. The paper is organised in five sections. Section two describes the details 

of the rig built for this study. Section three briefly recalls the analytical formulation used to derive 

the measured response functions. Section four contrasts the simulated and measured frequency re-

sponse functions (FRFs) for a) the base impedance, b) the blocked force per unit input current and  

c) the electrical impedance that characterise the classical and newly proposed proof mass actuators.  

2. Flywheel inertial actuator  

Normally inertial actuators for active vibration control are based on linear electromagnetic motor. 

In this study the transducer shown in Fig. 1a is used as reference actuator. As depicted schematically 

in Fig. 1c, this actuator is formed by a magnetic inner cylinder, which is attached to the structure and 

acts as a base mass 𝑚𝑏. Instead, the external coil armature cylinder acts as a proof mass 𝑀𝑎, which 

is suspended to the inner element via two flexural springs of stiffness 𝑘 and damping 𝑐. The electro-

magnetic effect of the actuator is modelled in terms of transduction coefficient 𝜓𝑎 that produces a 

pair of forces 𝐹𝑎 proportional to the current 𝑖𝑎 flowing in coil, which is characterised by resistance 𝑅 

and inductance 𝐿 effects. The same transduction coefficient produces the back electromotive force 

𝑢𝑒𝑚 that is proportional to the relative velocity 𝑤̇𝑚 − 𝑤̇𝑏 between the proof mass (coil) and the case 

(magnet) of the actuator. 

As shown in Fig. 1b, the same electromagnetic actuator is then equipped with a rocker arm having 

lumped masses at the ends, which produces the desired rotational inertial effect proportional to the 

relative axial motion between the inner cylindrical magnet and exterior armature coil element. This 

actuator is thus characterised by an additional relative inertia effect, which, as depicted schematically 

in Fig. 1d, is modelled with an inerter element [31] connected in parallel with the suspension spring 

and damper elements. This element is characterised by a mass 𝑚𝑤, which adds to the proof mass 𝑀𝑎, 

and by a polar moment of inertia 𝐼𝑤. The relative motion between the inner and outer cylindrical 

elements of the actuator was converted into a rotation of the rocker arm by hinging the arm to a post 

connected to the inner cylindrical magnet and to a bracket fixed to the external armature-coil element. 

The bracket was designed with four hinging points, so that the conversion offset 𝑟𝑤 from axial to 

rotational motion could be changed. In this way, the resulting equivalent relative axial inertia effect 

of the rocking arm 𝐼𝑤 𝑟𝑤
2⁄   was varied. The hinges produce a rotational damping effect 𝑐𝑤, which is 

also converted into axial damping given by 𝑐w 𝑟𝑤
2⁄ .  The physical properties of the coil-magnet actu-

ator and rocker arm element are summarised in Table 1. The table specifies the equivalent axial inertia 

effects of the rocker arm element with reference to the four hinging positions, i.e. with reference to 

the four offsets 𝑟𝑤.  
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Figure 1: Pictures (a,b) and schemes (c,d) of the tested classical (a,c) and the flywheel inertial actuator (b,d). 

 

Table 1: Mechanical parameters of the inertial actuators 

Parameter Value 

Proof mass / Coil mass 𝑀𝑎 = 0.203 kg 
Case mass / Magnet mass 𝑚𝑏 = 0.117 kg 

Flywheel mass 𝑚𝑤 = 0.03 kg 
Axial stiffness 𝑘 = 2950 Nm−1 
Damping ratio 𝜁 = 0.2 

Flywheel polar moment of inertia 𝐼𝑝 = 6.47 ∙ 10−5 kgm2 

Torsional damping ratio 𝜁𝑤 = 0.005 
Flywheel inertia values  𝐼𝑤1 = 7.4; 𝐼𝑤2 = 7.0; 𝐼𝑤3 = 6.7; 𝐼𝑤4 = 6.5 ∙ 10−5 kgm2 

Pushing pin offset values 𝑟𝑤1 = 17 ; 𝑟𝑤2 = 13 ; 𝑟𝑤3 = 9 ;  𝑟𝑤4 = 5 mm 

Axial mass effect of the flywheel 
𝐼𝑤1

𝑟𝑤1
2 = 0.26; 

𝐼𝑤2

𝑟𝑤2
2 = 0.42; 

𝐼𝑤3

𝑟𝑤3
2 = 0.83; 

𝐼𝑤4

𝑟𝑤4
2 = 2.62 kg  

Coil resistance 𝑅 = 23.5 Ω 
Coil inductance 𝐿 = 4.35 ∙ 10−3H 

Transduction coefficient  𝜓𝑎 = 22.5 NA−1 

3. Actuators mathematical models 

This section briefly recall the mathematical formulation used to derive the frequency response 

functions (FRF) for the base impedance, electrical impedance and blocked force per unit input current 

that characterise the electromechanical response of the classical (Figs. 1a,c) and flywheel (Figs. 1b,d) 

proof mass actuators. The details of the mathematical formulations can be found in Ref. [3]. The 

frequency domain formulation is derived with reference to the complex amplitudes 𝑔(𝜔) of time–

harmonic functions given in the form 𝑔(𝑡) = Re{𝑔(𝜔) exp(j𝜔𝑡)}, where 𝜔 is the circular frequency 

and j2 = −1. For simplicity, the frequency dependence is omitted in the expressions of the FRFs. 

(a) 

(b) 

(c) 

(d) 
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Considering the lumped parameter models shown in Figs. 1c,d, the base impedance, the blocked 

force per unit driving current and the electrical impedance of the actuators are given by: 

 𝑍𝑓𝑤̇ =
−𝐹𝑏

𝑤̇𝑏
|

𝑖𝑎=0
= 𝑍𝑏 +

𝑍𝑎

1+𝑌𝑚𝑍𝑎
 . (1) 

 𝐹𝑓𝑖 =
𝐹𝑏

𝑖𝑎
|

𝑤̇𝑏=0
=

𝜓𝑎

1+𝑌𝑚𝑍𝑎
 . (2) 

 𝑍𝑢𝑖 =
𝑢𝑎

𝑖𝑎
|

𝑤̇𝑏=0
= 𝑍𝑒 +

𝑌𝑚𝜓𝑎
2

1+𝑌𝑚𝑍𝑎
 . (3) 

In these equations 𝑍𝑎 and 𝑌𝑚 depend on the type of the actuator and for the classical actuator are 

defined as 𝑍𝑎 = 𝑐 +
𝑘

j𝜔
 and 𝑌𝑚 =

1

j𝜔𝑀𝑎
, while for the flywheel actuator are defined as  

𝑍a = 𝑐 +
𝑘

j𝜔
+ j𝜔

𝐼𝑤

𝑟𝑤
2 +

𝑐𝑤

𝑟𝑤
2  and 𝑌𝑚 =

1

j𝜔(𝑀𝑎+𝑚𝑤)
, where the damping is defined as 𝑐 = 𝜁2√𝑀𝑎𝑘 for 

the classical actuator and 𝑐 = 𝜁2√(𝑀𝑎 +  𝐼𝑤 𝑟𝑤
2⁄ + 𝑚𝑤)𝑘 for the flywheel actuator. The impedance 

of the actuator base mass is given by 𝑍𝑏 = j𝜔𝑚𝑏. Finally 𝑍𝑒 = j𝜔𝐿 + 𝑅. 

4. Experimental tests 

The following subsections contrasts the measured and simulated base impedance, blocked force 

per unit input current and electrical impedance of the classical and flywheel proof mass actuators. 

The FRFs are depicted in a 5 × 2 matrix of plots. The left hand side plots show the moduli while the 

right hand side plots show the phase of the measured (solid blue lines) and simulated (dash-dotted 

red lines). The plots in the first row shows the FRFs for the reference actuator without flywheel while 

the plots in the other four rows shows the FRFs for the reference actuator with the rocker arm hinged 

with a progressively smaller offset (𝑟𝑤1 > 𝑟𝑤2 > 𝑟𝑤3 > 𝑟𝑤4) such that the equivalent relative axial 

inertia effect of the flywheel is progressively increased (
𝐼𝑤1

𝑟𝑤1
2 <

𝐼𝑤2

𝑟𝑤2
2 <

𝐼𝑤3

𝑟𝑤3
2 <

𝐼𝑤4

𝑟𝑤4
2 ).  

4.1 Base impedance 

The first row of plots in Fig. 2a show the typical modulus and phase diagrams that characterise the 

base impedance of a proof mass actuator [33], which is characterised by low and high frequencies 

asymptotic mass behaviours, proportional respectively to the total mass 𝑀𝑎 + 𝑚𝑏 and the case mass 

𝑚𝑏 of the actuator. The two asymptotes are separated by a resonance peak and an antiresonance 

through respectively at about the fundamental resonance frequency of 20 Hz and at about 32 Hz. The 

remaining four rows of plots in Fig. 2b-e show the effects produced by the rocker arm hinged with a 

progressively smaller offset such that its equivalent relative axial inertia effect 𝐼𝑤 𝑟𝑤
2⁄   is progressively 

increased. The fundamental resonance frequency moves progressively to lower frequencies; that is to 

about 12 Hz (Fig. 2b), to about 10 Hz (Fig. 2c), to about 8.5 Hz (Fig. 2d) and to about 6.5 Hz (Fig. 

2e). Also, the amplitude of the higher frequency asymptotic mass behaviours is progressively in-

creased. Finally the internal damping effect in the proof mass actuator is also increased, such that the 

resonance peak and antiresonance through are progressively rounded. The simulated impedance FRFs 

align reasonably well with the experimental results for all configurations except the last one. For the 

highest value of equivalent relative axial inertia effect 𝐼𝑤4/𝑟𝑤4
2  (Fig. 2e) the simulation result gives 

lower actuator resonance frequency compared to the experiment. Furthermore, the high relative axial 

inertia effect introduces additional dynamics to the system that result in a wide band crest followed 

by a wide band between 50 and 100 Hz. The impedance measured on the classical actuator shown in 

Fig. 2a is characterised by a glance at about 39 Hz, which is not predicted in the simulation. It is likely 

that this peak is linked to a resonant rocking mode of the suspended mass, which is however removed 

when the rocker arm is fixed to the actuator. 
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Figure 2: Base impedance for the reference actuator (a) and for the flywheel actuator with inertia 𝑰𝒘𝟏 (b), 

inertia 𝑰𝒘𝟐 (c), inertia 𝑰𝒘𝟑 (d) and inertia 𝑰𝒘𝟒 (e). Experimental results (solid blue lines). Simulations 

(dashed-dotted red lines). 

4.2 Blocked force 

The first row of plots in Fig. 3a show the typical modulus and phase diagrams that characterise the 

blocked force per unit driving current of a proof mass actuator [33]. At low frequency the force rises 

proportionally to 𝜔2 and is out of phase with the driving current signal. The force peaks at the funda-

mental resonance frequency of the proof mass actuator, i.e. about 20 Hz, and then rapidly decreases 

and settle to a constant value equal to the transduction coefficient, i.e. 27dB, in phase with the driving 

current. Thus the proof mass actuator produces the desired constant force excitation in phase with the 

driving signal at frequencies above its fundamental resonance frequency. At lower frequencies the 

force produced is out of phase with the driving signal. Thus when this actuator is used to implement 

a negative velocity feedback to mimic a sky-hook damper, at frequencies below the fundamental 

resonance frequency, the feedback loop essentially produces a positive velocity feedback effect, that 

is a negative damping effect, which could lead to instability. It is therefore vitally important the fun-

damental resonance frequency is as low as possible and the amplitude of the resonance peak is also 

the minimum possible. The remaining four rows of plots in Fig. 3b-e show that when the actuator is 

equipped with the rocker arm hinged with an increasingly smaller offset and thus the equivalent rel-

ative axial inertia effect of the rocking arm 𝐼𝑤 𝑟𝑤
2⁄   is progressively increased, the resonance peak is 

progressively smoothened and brought down in frequency. Also, the higher frequencies constant 

force excitation is also progressively lowered to about 21 dB, 18 dB, 14 dB, 6 dB. Also the simulated 

force per unit driving current FRFs agree reasonably well with the experimental results. As seen 

above, the classical actuator is characterised by a rocking effect of the proof mass, which produces a 

small peak at about 39 Hz. Also, at frequencies above fundamental resonance frequency of the actu-

ator, the rocker arm brings in additional dynamic effects, which results in additional small peaks at 

about 50 Hz and around 100 Hz (particularly for the configuration with the smallest offset). 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 3: Blocked force for the reference actuator (a) and for the flywheel actuator with inertia 𝑰𝒘𝟏 (b), iner-

tia 𝑰𝒘𝟐 (c), inertia 𝑰𝒘𝟑 (d) and inertia 𝑰𝒘𝟒 (e). Experimental results (solid blue lines). Simulations (dashed-

dotted red lines). 

 

 

Figure 4: Electrical impedance for the reference actuator (a) and for the flywheel actuator with inertia 𝑰𝒘𝟏 

(b), inertia 𝑰𝒘𝟐 (c), inertia 𝑰𝒘𝟑 (d) and inertia 𝑰𝒘𝟒 (e). Experimental results (solid blue lines). Simulations 

(dashed-dotted red lines). 

(a) 

(b) 

(c) 

(d) 

(e) 

(a) 

(b) 

(c) 

(d) 

(e) 
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4.3 Electrical impedance 

The first row of plots in Fig. 4a show the typical modulus and phase diagrams that characterise the 

electrical impedance FRF of a coil-magnet proof mass actuator, which is given by the superposition 

of the of the coil 𝑍𝑒 and the electro-mechanical effect 
𝑌𝑚𝜓𝑎

2

1+𝑌𝑚𝑍𝑎
 . In the 0 – 100 Hz frequency range, the 

coil electrical impedance is purely resistive. Also, the electro-mechanical effect is relevant only 

around the fundamental resonance frequency of the actuator. Thus the spectrum is characterised by a 

constant value of about 27.5 dB and phase zero for the resistive component and, around at about 20 

Hz, a resonance peak and a phase swing to about ±30°, which is due to the electro-mechanical effect 

of the proof mass actuator. The remaining four rows of plots in Fig. 4b-e show that when the actuator 

is equipped with the rocker arm hinged with an increasingly smaller offset and thus the equivalent 

relative axial inertia effect of the rocking arm 𝐼𝑤 𝑟𝑤
2⁄   is progressively increased, the resonance peak 

is progressively smoothened and brought down in frequency. The simulated impedance FRFs agree 

quite well with the measured FRFs, particularly because the higher dynamic effects introduced by the 

rocker arm element occur at higher frequencies than the fundamental resonance frequency of the 

proof mass actuator and thus are not rendered into the electrical impedance.   

5. Conclusions 

This paper has presented experimental and simulation results on the FRFs that characterise the 

electromechanical response of a new flywheel inertial actuator, which can be used to implement a 

velocity feedback loop to reduce the flexural vibration of flexible structures. The study has considered 

the mechanical base impedance, the blocked force per input current and the electrical impedance 

FRFs. The measured FRFs were taken on a classical coil-magnet inertial actuator equipped with a 

rocker arm system specifically designed to produce a variable flywheel inertia effect. The simulated 

FRFs were derived from a lumped parameter model.  

The study has shown reasonably good agreement between the measured and simulated FRFs. Also, 

it has confirmed that the rotational inertia effect of the flywheel element tends to reduce the resonance 

frequency and the amplitude of the fundamental resonance peak that characterise the response of the 

actuator without increasing the static deflection of the actuator. Thus the new flywheel inertial actu-

ator could be used to implement more stable and robust velocity feedback loops to control the vibra-

tion of mechanical systems and flexible structures.  

Acknowledgments 

The authors gratefully acknowledge the European Commission for its support of the Marie  

Skłodowska-Curie program through the ITN ANTARES project (GA 606817). 

REFERENCES 

1 Kras, A. and Gardonio, P. Flywheel proof mass actuator for velocity feedback control, Proceedings of the MoViC–

RASD 2016 International Conference on Recent Advances in Structural Dynamics, Southampton, UK, 3-6 July, 

(2016). 

2 Kras, A. and Gardonio, P. Flywheel inertial actuator for velocity feedback control: parametric study, Proceedings 

of the ISMA2016 International Conference on Noise and Vibration Engineering, Leuven, Belgium, 19-21 Septem-

ber, (2016). 

3 Kras, A. and Gardonio, P. Velocity feedback control with a flywheel proof mass actuator, Journal of Sound and 

Vibration, (2017). 

4 Elliott, S. J., Gardonio, P., Sors, T. J. and Brennan, M. J. Active vibroacoustic control with multiple local feedback 

loops. The Journal of the Acoustical Society of America, 111 (2), 908-915, (2002).  

5 Balas, M. Direct velocity feedback control of large space structures, Journal of Guidance, Control, and Dynamics, 

2 (3), 252–253, (1979). 

6 Miller, D. W. and Crawley, E. F. Theoretical and experimental investigation of space-realizable inertial actuation 

for passive and active structural control, Journal of Guidance, Control, and Dynamics, 11 (5), 449–458, (1988). 



ICSV24, London, 23-27 July 2017 
 

 

8  ICSV24, London, 23-27 July 2017 

7 Zimmerman, D. C., Hornar, G. C. and Inman, D. J. Microprocessor Controlled Force Actuator, Journal Guidance, 

Control, and Dynamics, 11 (3), 230-236, (1988). 

8 Politansky, H. and Pilkey, W. D. Suboptimal feedback vibration control of a beam with a proof-mass actuators, 

Journal of Guidance, Control, and Dynamics 12 (5), 691–697, (1989). 

9 Zimmerman, D. C. and Inman, D. J. On the nature of the interaction between structures and proof-mass actuators, 

Journal of Guidance, Control, and Dynamics, 13 (1), 82–88, (1990). 

10 Lindner, D. K., Celano, T.P. and Ide, E. N. Vibration suppression using a proof mass actuator operating in 

stroke/force saturation, Journal of Vibration and Acoustics, 113 (4), 423–433, (1991). 

11 Garcia, E., Webb, S. and Duke, J. Passive and active control of a complex flexible structure using reaction mass 

actuators, Journal of Vibration and Acoustics Transactions of the ASME, 117 (1), 116–122, (1995). 

12 Elliott, S. J., Serrand, M. and Gardonio, P. Feedback stability limits for active isolation systems with reactive and 

inertial actuators, Journal of Vibration and Acoustics, 123 (2), 250–261, (2001).  

13 Griffin, S., Gussy, J., Lane, S. A., Henderson, B. K. and Sciulli, D. Virtual skyhook vibration isolation system, 

Journal of Vibration and Acoustics, 124 (1), 63–67, (2001). 

14 Gonzalez Diaz, C., Paulitsch, C. and Gardonio, P. Active damping control unit using a small scale proof mass elec-

trodynamic actuator, Journal of the Acoustical Society of America, 124 (2), 886-897, (2008).  

15 Lindner, D., Zvonar, G. and Borojevic, D. Performance and control of proof-mass actuators accounting for stroke 

saturation, Journal of Guidance, Control, and Dynamics, 17 (5), 1103–1108, (1994). 

16 Chase, J. G., Yim, M. and Berlin, A. A. Integrated centering control of inertially actuated systems, Control Engi-

neering Practice, 7 (9), 1079-1084, (1999). 

17 Baumann, O. N. and Elliott, S. J. Destabilization of velocity feedback controllers with stroke limited inertial actua-

tors, The Journal of the Acoustical Society of America, 121 (5), 211–217, (2007). 

18 Dal Borgo, M. Ghandchi Tehrani, M. and Elliott, S. J. Dynamic analysis of nonlinear behaviour in inertial actuators, 

Journal of Physics: Conference Series, 744 (1), 1-12, (2016) 

19 Baumann, O. N. and Elliott, S. J. The stability of decentralized multichannel velocity feedback controllers using 

inertial actuators, Journal of the Acoustical Society of America, 121 (1), 188–196, (2007). 

20 Gonzalez Diaz, C., Paulitsch, C. and Gardonio, P. Smart panel with active damping units. Implementation of decen-

tralized control, Journal of the Acoustical Society of America, 124 (2), 898-910, (2008). 

21 Rohlfing, J., Gardonio, P. and Thompson, D. J. Comparison of decentralized velocity feedback control for thin 

homogeneous and stiff sandwich panels using electrodynamic proof-mass actuators, Journal of Sound and Vibration, 

330, 843–867, (2011). 

22 Benassi, L. and Elliott, S. J. Active vibration isolation using an inertial actuator with local displacement feedback 

control, Journal of Sound and Vibration, 278 (4–5), 705–724, (2004). 

23 Paulitsch, C., Gardonio, P. and Elliott, S. J. Active vibration control using an inertial actuator with internal damping, 

Journal of the Acoustical Society of America, 119 (4), 2131–2140, (2006). 

24 Benassi, L., Elliott, S. J. and Gardonio, P. Active vibration isolation using an inertial actuator with local force feed-

back control, Journal of Sound and Vibration, 276 (1-2), 157-179, (2004). 

25 Gonzalez Diaz, C. and Gardonio, P. Feedback control laws for proof-mass electro-dynamic actuators, Journal of 

Smart Materials and Structures, 16, 1766-1783, (2007). 

26 Lanzon, A. and Petersen, I. R. Stability robustness of a feedback interconnection of systems with negative imaginary 

frequency response, IEEE Transactions on Automatic Control, 53, 1042–1046, (2008). 

27 Diaz, I. M. and Reynolds, P. Acceleration feedback control of human-induced floor vibrations, Engineering Struc-

tures, 32 (1), 163-173, (2010). 

28 Diaz, I. M., Pereira, E. and Reynolds, P. Integral resonant control scheme for cancelling human-induced vibrations 

in light-weight pedestrian structures, Structural Control and Health Monitoring, 19 (1), 55–69, (2011). 

29 Pereira, E., Aphale, S. S., Feliu, V. and Moheimani, S. O. R. Integral resonant control for vibration damping and 

precise tip-positioning of a single-link flexible manipulator, IEEE/ASME Transactions on Mechatronics, 16 (2), 

232-240, (2011). 

30 Rohlfing, J., Elliott, S. J. and Gardonio, P. Feedback compensator for control units with proof-mass electrodynamic 

actuators, Journal of Sound and Vibration, 331 (15), 3437–3450, (2012). 

31 Smith, M., Synthesis of mechanical Networks: The Inerter, IEEE Transactions on automatic control, 47, 1648–

1662, (2002). 

32 Zilletti, M., Feedback control unit with an inerter proof-mass electrodynamic actuator, Journal of Sound and Vibra-

tion, 369, 16–28, (2016). 

33 Rohlfing, J., Gardonio, P. and Elliott, S. J. Base impedance of velocity feedback control units with proof-mass 

electrodynamic actuators, Journal of Sound and Vibration, 330 (20), 4661-4675, (2011). 

http://iopscience.iop.org/journal/1742-6596
http://iopscience.iop.org/volume/1742-6596/744

