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INTRODUCTION

The theory of elasticity contains the tools for a general analysis of all dynamic structures.
In each case (string, rod. beam, membrane, plate elem). it yields differential equations
‘gouverning the diSplacements of the structure. Generally, boundary conditions are applied in
terms of displacement or force. An alternative method is Statistical Energy Analysis (S.EIA,).
Instead of looking for displacement. S.E.A. gives a global energy description without any
infon'nation on its space distribution

During the last decade. methods based on the analysis of the energy flew have been
developped ([l] to [4]). They lead to equations specifically adapted to high frequencies
resolution because of the particular assumptions envolved and the space smoothing process of
the energy distribution. We shall call them S.E.F. (Smooth Energy Formulation). However. it
remains some difficulties to describe coupled conditions just with total energy and active energy
flow. In [5]. it is proposed to associate to those quantities, the lagrangian energy and the reactive
energy flow. Then one obtains, for longitudinal and transverse vibrations, a formulation as
accurate as the displacement one.

In the following study, we shall present, in a deductive form. the pattern which leads to
the general energy formulation (G.E.F.). Several examples are dealt with. In each case. we shall
show the assumptions that allow one to derive the S.E.F. relationships between total energy and
active power.

GENERAL DEFINITIONS

We study the steady state forced oscillations of linear systems harmonically excited with
frequency (0121:. Each part of the system has an instantaneous kinetic Ed!) and potential energy
5,,(1) and receive an instantaneous power P(t). The sum and the difference of these energies give
respectively the total energy W(t)= E‘(t)+ E,(t) and lagrangian L(t)= E‘(!)"E,(l'). In the
harmonic case, the time is removed by taking time-averaged quantities,

2n7— E-IJTE 5—175 W—E r L-E—E-;. ‘—?o ((1111. P—FL P(t)dt. — :+ p, _ t r,

and complex power H = P + jQ with active P and reactive part Q. For continuous systems the
energies are replaced by energy densities and pawer by energy flow (it‘s a vector in the general
case). We shall use, however, the same notations W, L and fi = .5 + jé.
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POWER BALANCE IN THE HARMONIC CASE

 

For a continuous dissipating system. the power balance with instantaneous quantifies is

-6.F(M,I)-PM(M.I)=%(M-I)u

where F is the energy flow at point M , pm the power density being dissipated, and 23% the

time rate of change of energy density. In the harmonic case. this relationship contains complex

values. It is shown in [6] that if the potential energy is elastic, then the power balance yields the
two following forms:

V.F+p&,=o v.é+2wL=o (1)

The interpretation of the first equation is straightforward: in steady state conditions, the active
energy flow received by the system is equal to the dissipated power density (the time-averaged

rate of change of the energy density vanishes). The second equation shows that the reactive

energy flow received by the system is proportional to the lagrangian. So, it has a nonzero
divergence even though the system is conservativeThe excitations are taken into account by the

boundaries conditions discussed below. We shall now determine the dissipated power density

pdiss and the power 11 flowing through a point in terms of energies W and L. Hence. by

substituting these values into (I). we shall derive the equations governing the behaviors of

energies W and L and their respective boundary conditions.
First of all. let us consider a viscous damping model. The damping strength is assumed to

be proportional to the velocity. It follows that the power dissipated is proportional to the

averaged kinetic energy:

pm = n(W + L). (2)

Let us then consider the case of hysterelic damping. This one is only developped in

steady state conditions. One substitutes in Hooke's law a complex Young's modulus. It follows

that the power being dissipated is proportional to both. the averaged potential energy and the

frequency. So

Pa: = new - L) (3)

We have two damping models expressed in terms of energies by the identities (2) and (3).

To calculate the energy flow fl only in terms of energies W and L. we must consider
each problem seperatly in such a way that usually no general formula can be proposed. in what

follows, the study of several illustration examples is presented.

DISCRET SYSTEM

Let us consider the system shown in figure I:
1

Flu

->i
219.: Discret’. sysLam SH :
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We assume that the injected power is known but not the displacement, We have to find the total
energy W and lagrangian L with the method explained above. The global for-m of the power
balance (Dis: Pw—P“=o QW,_ZwL=0 (4)

Moreover the damping model choosed for this system is of viscous type: Pa, = 11(W +L).
These relationships can be set in a matrix form as follows:

11 n W = P-w-
0 2w L Q,"-

The energy problem can therefore be easily solved. In this case it is obvious that applying the
Newton's second law to obtain this simple result would be longer. This simple example shows us
that this method is straightforward to obtain energies by knowing injected power. But we have to
assume that both active and reactive terms are known.
Following the same procedure one can deal with more elaborate systems constructed with the
following elements: mass, spring, hysteretic spring (with complex modulus) and dash-pot (see
[61). _

law‘sc)fl l a t E n.

(19.2 Discretliauoh proceu of an homogeneous rod

The larger the number n of elements is. the more similar the system seems to be compared with
an homogeneous rod submitted to longitudinal vibrations: this is a typical discretization process.

LONGITUDINAL VIBRATIONS IN RODS

[at us consider longitudinal vibrations in a rod as shown in figure 3.

 

Him

119. 3 rzu—ciaryped mu

. . dl’ dQ
Th bal : -— + . = 0 —+ 2coL = 0.epower ance l5 ix p“ ix

We choose here hysteretic damping model, so: p“ = 710(W — L).
It remains to_evaluate P(x) andQ(x) in terms of W(x) and Ux). Letufx) be the complex
displacement of a point of abscissa x. energy densities and energy flow are given by:

Et=lpSw2uu' 55150595”— and n=—flzsflu'
4 4 dz 4: 2 dx
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. 1

By differentiating Ec and E, with respect to x and using equation %+k‘u; 0 each time a

second derivative appears. we find:

. 14 pm1 For) __2 )4. 0 1 W0!)
“M” an [900)" nix width») (5’

Hence by substituting this equation into the power balance. we obtain:

dz w 2 _n2 "a w 0
_. + =ML] kn "2 4 L o _ <6»

The equation (5) gives the boundary conditions associated to equation (6). For the example
described in figure 3. we write:

[mm _[P,.,, d (PU) {0)
am)— 2-an a" 9(1)]— 0 '

Following Wohlever in [4], we now deal with space-averaged quantities:
i Ir 1 .4:

With A=E (W)(x)=ILW(v)dv.

As the space-averaged Iagrangian vanishes V1 (L)(x) = 0 . then (5) and (6) become:

<r>(x)=—%¥m %‘2’—>(x)—k:n’<wxx) =0 (7). (a)
Relationship (7) gives the boundary conditions associated to equation (8).

Figure 6 (energy densities) presents three types of curve: thefirst one is computed from
the classical displacement formulation, the second one is computed from the method previously
presented (G.E.F.) and the third one from the smooth formulation (S.E.F.). There is no
difference between the first two. In fact. the general energy formulation assumes nothing more
titan the displacement formulation.

TRANSVERSAL VIBRATIONS IN BEAMS

Let us consider small transversal vibrations in an Euler-Bemouilli‘s beam as shown in figure 4.

E=Enu+jm
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The power balance has the same form as for rods. Moreover, hysteretic damping model still
applies. so (3) remains valid. The main difference lies in the calculation of the energy flow.
Here, two sons of energie flow are present: the first I'll = P, + jQ is carried by shear force and

the second 1'], = P, + jQ, by the moment. Let u(x) be the transverse displacement of a point of

abscissa x; energy densities and energy flows are given by:

 

E, = gpSm’uu'. E, =%Eol%l:%, n, = gag—Eu: n, = —j7wEI:x—zl;%.

This time, we have to write third and seventh derivatives of energy densities by using equation

d—l‘: - k‘u = 0 each time a founh derivative appears; using gig—SM) ‘, we get:

[P/)=l{(l+ n’)‘ [8+ 1,1 —n‘]i(W)+M[-IZS-64n’ aen’]£(w]}‘ (9)
Q1 1611’ 611 0 dx" L I4 4617—3471’ 3411’ dx’ L

  

2n 0 dx’ L It; -32n—14n’ m,’ H L

*5

(Fr): :40 +31? (“3.11 -3n’]d_’(w)+(_l+_n‘l[—l28—96n‘ 28n‘]d_’[w)]‘ (10)
I n

By adding these two relationships. we naturally obtain the total energy flow. At last, by
substituting this last expression into the power balance, it follows:

' W 16 1 ‘ W 4 1 W 0
—d. -k: 1 *5" 4. +ki 0, " ~= . (11)
:17: L 611 0 dz L —4n 16 L 0

It is advised, for better numerical Stability, not to use (9) and (10) as boundary conditions. but to
call the relationships on energy derivatives with smaller order. For example. at clamped end:

 

_d(W+L) =nt’(w+L) =d’(W+L) =d’(W—L)
W + L _ = 0

( )I"° dx 11:0 dx’ nun dx’ [1:0 d1! [1-0

For simplification purposes, beside the space-averaged energy quantities. we assume also the
fat-field conditions. Then the Iagrangian vanishes and the third derivative of the total energy

3 1 1 W .
becomes proportionnal to the first one. %(x) = "Thug; Thus. we obtain the smoothdx
energy formulation:

2 I 2

(P)(x)=—:—k“§1f§(x) w<x)-"—4IE”—(W)(x)=0 <12). (13)

These two equations look like (7) and (8).As (8) and (13) contain 17%: instead of k5. when
using the finite element method, the number of necessary degrees of freedom is much smaller
than with a displacement fon'nulation. They are suited for solving in high frequencies domain
(see [4]).
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Figures 7 (energy densities) present the curves computed from the classical displacement
formulation and the energy formulations. There is again no difference between the classical
method and the G.E.F.

VIBRATIONS IN CIRCULAR MEMBRANE

let us considerthe vibrations of a circular membrane as shown in figureIO:

{CC I”) )‘E
19. 5 ClreuIal mmbtan:

All the quantities envolved. are only r dependant Thus. the power balance can be written:

dP l dQ I_ _p+ . :0 _+_ +2011:
dr+r p" dr re 0

We always use hysteretic damping model. Let uh) be the complex displacement, then energy
quantities are expressed by:

EL and =—fl flu'.1 .
E=—w’, E=

‘ 4" W dr 2 dr
1

' Z
Lin1—

°dr

As previously done.we calculate the derivatives of kinetic and potential energies. But here, the
2 4r

displacement equation is i; + + k’u = 0. Let It0 = T£ a): .
fldr r dr

itfollows- (P(r)]=_£ y" 0 AW +1 %1 -}/., W)

'90) k; 5%er rI —lL'

Finally, by substituting into the power balance:

d’WIZ-ldw,rn’n’W0_ +_ _ = _ 1ML.) r[—l 2 a, L W n1 4 L 0 (5)

As we saw with the rod. relationship (14) gives the boundary conditions associated to equation
(15). For the example described in figure 5:

Pom.) _ o
Qtrm.) ‘ 0 '

{mm} PW-
Qtrm) ‘ Q.-
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The following two relationships give the smooth solution for energy densities and energy flow.

“1 fl 2 M EM _ z 1 _(P)(r)— nk:{ dr (r)+,(w)(r)} dr, (0+, d, (r) kon(W)(r)—0 (19,07)

These two equations represent the smooth energy formulation. A difficulty appears: the second
member of (16) is not proportional to the gradient of the space averaged total energy because of
the coefficient 2. In other worlds, the first two terms of equation (17) is not a particular form of
the laplacien. So, we cannot consider this equation as the heat equation for steady state
conditions.
Figure 8 shows the comparison between the classical displacement formulation and the energy
ones.

CONCLUSION

The formulations presented above constitute alternative forms for computing the total
energy andlagrangian. Taking into account both quantities, they are as accurate as the
displacement ones. Moreover coupling conditions can be exactly formulated (see [5] and [6]).
But they lead to equations as difficult to solve as the displacement ones. So there is no
advantage to take it for high frequency problem. However. the smooth formulations can be
deduced. They lead to equations which can be solved by finite element method at high
frequencies as the number of degrees of freedom is small. That is the practical interest to use
these specific equations rather than the displacement ones. in the case of the circular membrane.
it appears that equation (17) cannot be expressed with a laplacien. So, a general form for the
equations of the smooth formulation which is able to lead to equations (7), (8), (12). (13), (16)
and (17) should be investigated. Besides the differences between energy information and
displacement information have to be investigated.
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COMPARISON BETWEEN CLASSICAL FORMULATION. G.E.F. AND SEE RESULTS
nan mum

  
{19.6 Energy densities for
a uniform free-clamped rod
excited at the free end (left)

  
£ig.7 Energy densities for a
free-clamped beam excited at
x-DJ.

  
-n
un- w

fig.B Energy densities for a
circular membraneexcited in
its center. ‘
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