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We investigate the near and far fields of a thin elastic filament set at uniform low-Mach flow and
subject to leading-edge heaving actuation. The filament is "hanged" in the vertical direction and
is free at its downstream end, so that "hanging chain" gravity-induced tension forces apply. The
filament bending rigidity is assumed small, and we focus on analyzing the differences between a
highly elastic structure and a membrane (where the bending rigidity vanishes). The near field is
studied based on potential thin airfoil theory, whereas the acoustic field is investigated using the
Powell-Howe acoustic analogy. The results shed light on the specific effect of structure bending
stiffness on the dynamics and acoustic disturbance of an airfoil.

1. Introduction

The “hanging chain" problem, considering the in vacuo motion of a string suspended at its upper
end, free at its lower end, and subject to a downward gravity force, is a classical problem in structural
dynamics that has been studied extensively over the years [1]. The problem has been first considered
by Daniel Bernoulli during the 18th century, who used it as a model case for introducing the Bessel
eigenfunctions. Ever since, it has served as a useful setup for analyzing the small- and large-amplitude
vibrations developed in thin non-stiff bodies that are subject to external forcing (e.g., [2, 3]). In the
original formulation of the problem, the chain dynamic balance consists of body inertia and gravity-
driven tension, while the impact of structural bending rigidity is omitted. Yet, this latter effect always
exists, even if to a limited extent, and is known to have crucial importance in various applications in
civil and mechanical engineering [1, 4].

From a mathematical point of view, inclusion of the bending rigidity effect, even in a linearized
formulation, fundamentally changes the problem type from second to higher order in space, and
imposes the satisfaction of additional end-point conditions. In an effort to analyze the singular impact
of this change, several works have investigated the eigen- and external-force-induced motions of an
elastic beam in the limit of small bending stiffness [5, 6, 7], applying asymptotic and numerical
methods in the process of analysis. Notably, all of these studies have considered in vacuo setups,
where no consideration has been taken of the coupling with surrounding media. Even so, the problem
in hand was found challenging enough so that no complete analytical investigation could be carried
out, and the “patching" of an outer numerical solution with inner asymptotic approximations had to
be employed [7].

In parallel with the above investigations, a large number of works have recently analyzed a geo-
metrically similar, yet fundamentally different, “flapping flag" problem, where the fluid-structure in-
teraction of a thin filament with uniform incoming flow is considered (see Refs. [8, 9] and references
cited therein). This model problem has been shown relevant in a variety of engineering applications,
including the development of energy harvesting methodologies [10], optimization of propulsion per-
formance in single-body and group environments [11, 12], the mechanical modeling of palatal snoring
[13], and the evaluation of aerodynamic sound during flapping flight [14, 15]. In a typical setup, no
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account is taken of gravity effects (unless a more involved three-dimensional problem is considered
[16]), and the flag is modeled as an elastic fixed-free beam. When considering the linearized problem,
all tension forces are neglected, and the leading-order dynamic balance consists of inertia, bending
rigidity, and fluid loading effects.

Inasmuch as structural rigidity is always present in a hanging chain setup, it may be argued that
tension forces always exist in a flapping flag configuration. Such forces may originate from either
structure-induced effects (to maintain filament inextensibility), viscous boundary layer loading, or any
other external forcing acting parallel to the unperturbed body state. In the small-amplitude regime,
it may be shown that the effect of structure-induced tension is of higher order [17], and may thus
be neglected. Additionally, the relatively small magnitude of drag-induced tension at high Reynolds
number flows makes its impact minor [18]. To consider the third type of an externally-induced ten-
sion, Datta and Gottenberg [19] have studied the free vibrations developed in an infinitely long elastic
strip hanging vertically in a downward stream. A simplified “slender body" description has been ap-
plied to model the pressure loading acting on the body. This model essentially neglects the effects of
downstream wake and filament end points on the developed motion. A similar theoretical approach
has been applied later on, and validated experimentally, by Lemaitre et al. [20], to analyze the flutter
instability of a long ribbon hanging in axial air flow.

Noting the above, the objective of the present work is to investigate the motion of a finite-chord
flag immersed in uniform mean flow and subject to a gravity force in its axial direction. We focus
on the limit of small structural bending rigidity, to contrast the dynamic response of a membrane
(having no bending rigidity) with an elastic beam. For an elastic “flag", such an investigation is of
particular interest, since the typical rigidity involved (proportional to the third power of the filament
thickness) is arguably very small. In contrast with previous studies, the present analysis takes account
of the end effects of the body, and fully models the wake generated by the filament interaction with
the flow. This enables investigation of the impact of the difference in boundary conditions (between
the membrane and the beam) on the results, and allows quantitative discussion of the end-layer type
of motion observed near the flag edges.

2. Formulation of the problem
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Figure 1: Schematic of the hanging-flag setup: A flexible filament of length 2a is hanging in uniform
flow of speed U at zero incidence, and actuated at its upstream end with small-amplitude heaving mo-
tion. A wake, composed of discrete point vortices with positive (red) and negative (blue) circulations,
emanates from the filament downstream end.

The problem setup is described in Fig. 1. Consider a two-dimensional thin elastic filament of
length 2a, mass per unit area ρs, and bending rigidity EI. The filament is immersed in uniform flow of
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speed U in the x1-direction, and is subject to a gravity body force, g = gx̂1. At time t ≥ 0, sinusoidal
heaving actuation is applied at the structure upstream end,

ξ(x1 = −a) = ε̄ha sin (ωht) . (1)

In (1), ξ(x1, t) marks the filament displacement in the x2-direction, ε̄h � 1 (with an overbear marking
a non-dimensional quantity) is the scaled heaving amplitude, and ωh denotes the prescribed heaving
frequency. In line with hanging chain theory, the gravity-driven tensile force acting on the filament
per unit length is independent of structure vibrations, and is given by

T (x1) = ρsg (a − x1) . (2)

The tension acquires its maximal value (equal to the filament total mass per unit length) at the actuated
edge x1 = −a, and vanishes at the free end x1 = a. Based on the above description, the filament
displacement ξ(x1, t) is governed by the linearized equation of motion

ρs
∂2ξ

∂t2 + EI
∂4ξ

∂x4
1

− ρsg
∂

∂x1

(
(a − x1)

∂ξ

∂x1

)
= ∆p(x1, t), (3)

balancing structural inertia, bending stiffness, tensile force, and fluid loading terms. On the right-
hand side, ∆p = p− − p+ marks fluid pressure jump between the filament lower (p−) and upper (p+)
surfaces. It is through this term, missing in previous analyses of the in vacuo hanging chain problem,
that the structure motion and fluid dynamical problems are coupled.

Assuming high Reynolds number conditions, we consider the flow field to be inviscid. The small
amplitude of filament deflections (see Eq. (1)) then allows for the application of potential thin airfoil
theory to describe the fluid dynamical problem. In line with the unsteady conditions considered and
the Kelvin theorem, continuous vortex shedding occurs at the structure surface. At the small angles
of attack assumed, the flow at the filament upstream end and along its chord is regarded attached, and
release of vorticity is allowed only at the structure downstream edge. To describe the time evolution
of filament wake, we make use of a discrete-vortex representation, where, at each time step, a con-
centrated line vortex is released to the flow, with its strength Γk fixed by the Kelvin theorem and the
instantaneous time change in filament circulation (see Fig. 1). While discrete models are known to be
sensitive to the initial locations and core modeling of the nascent vortex [21, 22], our results indicate,
to the extent that the present small-amplitude setup is considered, that the chosen wake description
is converged in both time and space. At each time step ∆t, the nascent point vortex is placed at a
distance U∆t in the mean-flow direction from the instantaneous position of the trailing edge. Once
released, the trajectory of each wake vortex follows from a potential-flow calculation, as formulated
below (see Eq. (8)).

Adopting the thin-airfoil methodology, the filament is represented through its circulation distribu-
tion per unit length, γ (x1, t). Applying a complex notation and denoting the conjugate velocity of the
potential flow-field by W (z), the impermeability condition takes the form

∂ξ

∂t
+ U

∂ξ

∂x1
= −Im{W(z)|−a≤x1≤a}, (4)

where

W(z) = U −
i

2π

 N∑
k=1

Γk

z − zΓk

+

∫ a

−a

γ (s, t) ds
z − s

 . (5)

At the filament surface

W(z)|−a≤x1≤a = U −
i

2π

 N∑
k=1

Γk

x1 − zΓk

+

? a

−a

γ (s, t) ds
x1 − s

 , (6)
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where the barred integral sign denotes a Cauchy principal value integral. In (4)-(6), z = x1 + ix2

marks the complex representation of a point in the plane of motion, and zΓk denotes the instantaneous
location of the k-th trailing edge vortex. The pressure jump ∆p across the filament, appearing in the
filament equation of motion (3), is determined by the unsteady Bernoulli’s equation,

∆p(x1, t) = ρ0Uγ (x1, t) + ρ0
∂

∂t

∫ x1

−a
γ (s, t) ds, (7)

where ρ0 denotes the fluid mean density.
Wake vortices dynamics is coupled to the system through the right-hand side of the impermeability

condition (4). In line with potential-flow theory, the motion of each of these vortices is governed by

dzΓk

dt
= W∗

Γk
(k = 1, 2, . . . ,N), (8)

where W∗
Γk

marks the complex conjugate of the conjugate velocity induced at the instantaneous loca-
tion of the k-th wake vortex. Removing the vortex self-singularity, WΓk(z) is expressed by

WΓk(z) = U −
i

2π


N∑

m=1
m,k

Γm

zΓk − zΓm

+

∫ a

−a

γ (x1, t) dx1

zΓk − x1

 . (9)

The total system circulation is conserved by applying Kelvin’s theorem,

ΓN = −

N−1∑
k=1

Γk +

∫ a

−a
γ(x1, t)dx1

 , (10)

which fixes the strength of the nascent vortex ΓN .
Formulation of the problem is completed by ensuring regularization of the flow-field at the fila-

ment free end through the unsteady Kutta condition, γ(a, t) = 0. Additionally, in line with the fila-
ment equation of motion (3), initial and end conditions should be specified. Assuming no structure
displacements at times t < 0, we impose

ξ(x1, 0−) = 0 ,
(
∂ξ

∂t

)
(x1,0−)

= 0. (11)

Considering the upstream-end actuation in Eq. (1), and free-end conditions at x1 = a, the boundary
conditions applied are

ξ(−a, t) = ε̄ha sin(ωht) ,
(
∂ξ

∂x1

)
(−a,t)

= 0 ,
(
∂2ξ

∂x2
1

)
(a,t)

= 0 ,
(
∂3ξ

∂x3
1

)
(a,t)

= 0. (12)

We assume that release of the first trailing edge vortex occurs at t = 0. The system evolution is then
followed for t > 0 via numerical integration. Details regarding the problem scaling and numerical
procedure are given in Sec. 3.

3. Scaling and numerical analysis

To obtain a numerical solution, the dimensional problem formulated in Sec. 2 is non-dimensionalized
using the aerodynamic scales a, U, a/U, ρ0U2 and 2πaU for the length, velocity, time, pressure and
vortices circulations, respectively. Omitting presentation of the full non-dimensional problem for
brevity, the scaled form of the filament equation of motion (3) is

µ̄ᾱ
∂2ξ̄

∂t̄2 + ε̄
∂4ξ̄

∂x̄4
1

−
∂

∂x̄1

(
(1 − x̄1)

∂ξ̄

∂x̄1

)
= ᾱ∆p̄, (13)
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where non-dimensional quantities are marked by overbars. The equation is accompanied by the scaled
form of the boundary conditions (12),

ξ̄(−1, t̄) = ε̄h sin(ω̄h t̄) ,
(
∂ξ̄

∂x̄1

)
(−1,t̄)

= 0 ,
(
∂2ξ̄

∂x̄2
1

)
(1,t̄)

= 0 ,
(
∂3ξ̄

∂x̄3
1

)
(1,t̄)

= 0. (14)

Eqs. (13) and (14) are governed by the non-dimensional parameters

µ̄ =
ρs

ρ0a
, ᾱ =

ρ0U2

ρsg
, ε̄ =

EI
ρsga3 , ε̄h and ω̄h =

a
U
ωh, (15)

denoting filament to fluid mass ratio, fluid to filament gravity-driven inertia, normalized filament
rigidity, and scaled heaving amplitude and frequency, respectively. To illustrate our findings, we
consider a case where ε̄h = 0.01, in accordance with the small-amplitude assumption set in Sec. 2,
and focus on the limit of small bending stiffness, ε̄ � 1.

Numerical solution of the dynamical problem requires discretization of the system of equations in
both space (along the filament chord) and time (from t̄ = 0 to some final time). Space discretization is
needed to express the vorticity distribution γ̄(x̄1, t̄) along the filament, and the x̄1-derivatives appearing
in the structure equation of motion. The numerical solution for γ̄(x̄1, t̄) is obtained, in each time step,
via expansion of γ̄ in a Fourier-type series, which identically satisfies the Kutta condition (??) [23].
The system of equations is then integrated in time using a fourth-order Runge-Kutta algorithm. The
typical time step used for integration was π/200ω̄h (but not smaller than π/200 for ω̄h < 1), which
proved sufficient for convergence of the results. Our scheme calculates the entire time history of the
system starting at t̄ = 0. Yet, for demonstrating our results, we focus on the final periodic state of the
system, and not on the initial transient response. Cases where non-periodic large-amplitude motions
are obtained are beyond the scope of the present work, and are not considered here.

4. Convergence of the solution at ε̄→ 0

4.1 The problem for an actuated membrane

Focusing on the filament dynamics in the limit of small bending rigidity, we start by discussing
the limit-case setup of an actuated membrane, where ε̄ ≡ 0. Here, the bending rigidity term is
missing from the dynamical balance (13), and the small-amplitude membrane displacement ξ̄mem(x̄1, t̄)
(associated with the pressure jump ∆ p̄mem(x̄1, t̄)) is governed by

µ̄ᾱ
∂2ξ̄mem

∂t̄2 −
∂

∂x̄1

(
(1 − x̄1)

∂ξ̄mem

∂x̄1

)
= ᾱ∆ p̄mem. (16)

Having removed the fourth-order derivative term, only two end conditions may accompany Eq. (16).
Yet, while the imposition of a heaving displacement condition at the upstream end x1 = −1 is obvious,
the choice for an appropriate free-end condition seems unclear in the absence of body structural
stiffness. Notably, the second-derivative tension term in Eq. (16) vanishes at x̄1 = 1, modifying the
type of the equation near the edge. Our calculations then indicate that the application of only the
single heaving condition,

ξ̄mem(−1, t̄) = ε̄h sin(ω̄ht̄), (17)

suffices to formulate a well-posed problem. Although this conclusion has been noted in previous
studies of the counterpart in vacuo problem, it is not a trivial consequence in the present fluid-structure
interaction problem. The purpose of this section is to demonstrate how the elastic filament solution at
non-zero ε̄ � 1 converges to the membrane ε̄ = 0 solution of the problem (16)-(17).
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Figure 2: Numerical convergence of the filament displacement to the membrane solution at ε̄ → 0:
Comparison between the membrane deflection (ε̄ = 0, black solid lines) and the elastic filament
displacement for ε̄ = 10−6 (dashed blue lines), 10−4 (dash-dotted red lines) and 10−2 (dotted magenta
lines), at (a) ω̄h = 0.5 and (b) ω̄h = 5. The results are plotted at period time, t̄ = T̄ = 2π/ω̄h.

4.2 Comparison between the membrane and filament motions

To examine the convergence of the elastic filament solution to the membrane displacement, Figure
2 presents a comparison between the membrane ε̄ = 0 and filament deflections at decreasing values
of ε̄ = 10−2, 10−4 and 10−6. The results are plotted at period time, t̄ = T̄ = 2π/ω̄h, for low (ω̄h = 0.5,
Fig. 2a) and large (ω̄h = 5, Fig. 2b) values of the actuation frequency.

Starting with the low ω̄h = 0.5 frequency case, we observe that the differences between the fil-
ament and membrane solutions are small at the chosen values of ε̄. These differences are mainly
confined to the vicinity of the free end, and decrease with decreasing ε̄. This behavior changes con-
siderably when considering the large-frequency ω̄h = 5 response in Fig. 2b. Here, the amplitude
of structure deflection is an order of magnitude larger than for ω̄h = 0.5. In addition, the ε̄ = 10−2

displacement is markedly different (and confined to a much smaller amplitude) from the membrane
deflection, from which even the ε̄ = 10−6 solution deviates considerably. While these deviations van-
ish at lower values of ε̄ (not shown here), it is observed that the convergence of the filament to the
membrane solution requires lower values of ε̄ at larger actuation frequencies. Notably, the differences
between the solutions are not confined to the vicinities of the structure end points, and are visible
along the entire −1 ≤ x̄1 ≤ 1 filament chord.

To gain further insight into the convergence of the solution, Figs. 3a-3c compare between the
membrane and filament deflections at a fixed location (x̄1 = 1 in Figs. 3a and 3c; x̄1 = 0.6 in Fig. 3b)
and at the same values of ε̄ = 10−2, 10−4 and 10−6 as in Fig. 2. Additionally, Figs. 3d and 3e compare
between the membrane and filament body circulations, obtained by integration over the circulation
per unit length γ̄(x̄1, t) over the structure chord,

Γ̄body(t̄) =

∫ a

−a
γ̄(x̄1, t̄)dx̄1. (18)

In accordance with the Kelvin theorem, Γ̄body(t̄) is fixed by the instantaneous sum of circulations of
all wake vortices (see Eq. (10)). The results are plotted along a period, 0 ≤ t̄ ≤ T̄ , for low (ω̄h = 0.5,
Fig. 3a and 3d) and large (ω̄h = 5, Figs. 3b, 3c and 3e) actuation frequencies.

Considering the body deflections, Fig. 3a reconfirms the results in Fig. 2a, indicating that the
differences between the membrane and filament positions are negligible at the low values of ε̄ and ω̄h

considered. Figs. 3b and 3c then demonstrate the different behavior at large frequencies, characterized
by considerably larger deflections, and marked differences between the membrane and various ε̄ , 0
displacements. These differences become larger with increasing distance from the fixed end (cf. Figs.
3b and 3c), as the position of the structure at x̄1 = −1 is identical in all configurations (cf. the
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Figure 3: Numerical convergence of the filament displacement and circulation to the membrane so-
lution at ε̄ → 0: (a-c) Comparison between the membrane deflection (ε̄ = 0, black solid lines) and
counterpart filament displacement for ε̄ = 10−6 (dashed blue lines), 10−4 (dash-dotted red lines) and
10−2 (dotted magenta lines), at (a) ω̄h = 0.5 and x̄1 = 1; (b) ω̄h = 5 and x̄1 = 0.6; and (c) ω̄h = 5 and
x̄1 = 1. (d-e) Comparison between the membrane and filament circulations at the same values of ε̄ for
(d) ω̄h = 0.5 and (e) ω̄h = 5. The results are plotted along a period.

displacement conditions in Eqs. (14) and (17)). Similar trends are observed when comparing the
results for the body circulation in Figs. 3d and 3e. As in Figs. 3a-3c, the differences between the
membrane and filament systems are nearly indiscernible for ω̄h = 0.5, but are considerable for ω̄h = 5,
even for ε̄ = 10−6. Here, convergence of the filament to the membrane solution is obtained only at
lower values of ε̄.

Further results, demonstrating the specific effect of structural stiffness on the system behavior, as
well as analysis of the resulting acoustic field, will be discussed during the presentation.

References

1. Hagedorn, P. and Dasgupta, A., Vibrations and Waves in Continuous Mechanical Systems, Wiley,
Chichester, England (2007).

2. Bailey, H. Motion of a hanging chain after the free end is given an initial velocity, American
Journal of Physics, 68, 764–767, (2000).

3. Belmonte, A., Shelley, M. J., Eldakar, S. T. and Wiggins, C. H. Dynamic patterns and self-
knotting of a driven hanging chain, Physical Review Letters, 87, 114301, (2001).

4. Antman, S. S., Nonlinear Problems of Elasticity, Springer, New York (2004).

5. Lakin, W. D. Eigenvalues of a slightly stiff pendulum with a small bob, Journal of Engineering
Mathematics, 9, 207–218, (1975).

6. Schafer, B. Free vibrations of a gravity-loaded clamped-free beam, Ingenieur Archiv, 55, 66–80,
(1985).

ICSV24, London, 23-27 July 2017 7



ICSV24, London, 23-27 July 2017

7. Denoel, V. and Canor, T. Patching asymptotics solution of a cable with a small bending stiffness,
Journal of Structural Engineering, 139, 180–187, (2013).

8. Alben, S. and Shelley, M. J. Flapping states of a flag in an inviscid fluid: bistability and the
transition to chaos, Physical Review Letters, 100, 074301, (2008).

9. Shelley, M. J. and Zhang, J. Flapping and bending bodies interacting with fluid flows, Annual
Review of Fluid Mechanics, 43, 449–465, (2011).

10. Allen, J. J. and Smits, A. J. Energy harvesting eel, Journal of Fluids and Structures, 15, 629–640,
(2001).

11. Liao, J. C., Beal, D. N., Lauder, G. V. and Triantafyllou, M. S. Fish exploiting vortices decrease
muscle activity, Science, 302, 1566–1569, (2003).

12. Michelin, S. and Llewellyn Smith, S. G. Resonance and propulsion performance of a heaving
flexible wing, Physics of Fluids, 21, 071902, (2009).

13. Huang, L. Mechanical modeling of palatal snoring, Journal of the Acoustical Society of America,
97, 3642–3648, (1995).

14. Sarradj, E., Fritzsche, C. and Geyer, T. Silent owl flight: bird flyover noise measurements, AIAA
Journal, 49, 769–779, (2011).

15. Manela, A. Vibration and sound of an elastic wing actuated at its leading edge, Journal of Sound
and Vibration, 331, 638–650, (2012).

16. Huang, W.-X. and Sung, H. J. Three-dimensional simulation of a flapping flag in a uniform flow,
Journal of Fluid Mechanics, 653, 301–336, (2010).

17. Alben, S. Optimal flexibility of a flapping appendage in an inviscid fluid, Journal of Fluid
Mechanics, 614, 355–380, (2008).

18. Manela, A. and Howe, M. S. The forced motion of a flag, Journal of Fluid Mechanics, 635,
439–454, (2009).

19. Datta, S. K. and Gottenberg, W. G. Instability of an elastic strip hanging in an airstream, Journal
of Applied Mechanics, 42, 195–198, (1975).

20. Lemaitre, C., Hemon, P. and de Langre, E. Instability of a long ribbon hanging in axial air flow,
Journal of Fluids and Structures, 20, 913–925, (2005).

21. Saffman, P. and Baker, G. Vortex interactions, Annual Review in Fluid Mechanics, 11, 95–122,
(1979).

22. Sarpkaya, T. Computational methods with vortices – the 1988 freeman scholar lecure, Journal of
Fluids engineering, 11, 5–52, (1989).

23. Manela, A. and Huang, L. Point vortex model for prediction of sound generated by a wing
with flap interacting with a passing vortex, Journal of the Acoustical Society of America, 133,
1934–1944, (2013).

8 ICSV24, London, 23-27 July 2017


	 Introduction
	 Formulation of the problem
	Scaling and numerical analysis
	 Convergence of the solution at 0
	 The problem for an actuated membrane
	 Comparison between the membrane and filament motions


