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This paper presents a pre-processing technique to select the optimal filtering frequency band
identifying gear fault signature and use the filtered signal to calculate statistical features. The
selected technique the cyclic spectral correlation, as proposed by Antoni [11]. It allows the
visualization of excitations of the signal on a map. According to the literature, this technique
appears to be more powerful than the time-frequency methods as it exploits the cyclostationary
nature of signals, emitted by rotating machinery. This work analyses the benefits of filtering
the signal before proceeding to feature extraction. The last step of this analysis is related
to dimensionality reduction using the Principal Component Analysis method. In order to
understand the influence of different gear fault conditions, healthy, chipped-tooth and missing-
tooth measurements have been performed in a Machine Fault Simulator from SpectraQuest under
different speed regimes. The central goal of this paper is to obtain key features that allow the
identification of the condition of the gear at different speeds.

Keywords: Missing Tooth, Chipped Tooth, Condition Monitoring, Feature Extraction, Feature
Dimension Reduction

1. Introduction

Condition Monitoring aims at detecting faults to minimize production costs and optimize
predictive maintenance. Such process is often cumbersome since the detectability of faults depends
on the geometry of the components under analysis, the type and severity of the fault, the speed
regime, location of the sensors and signal processing applied. Gears are an important component of
rotating machines, and often the faults in these components are the cause of catastrophic breakdown
of industrial applications. For this reason a great effort has been put into research of this subject.

Every machine inclunding rotating components has a specific sound and vibration signature
related to its construction and structural health state. Thus, changes in the vibration signature can
be used to detect incipient defects before they become critical.

Accordingly, gearbox faults can be diagnosed through the changes that occur at particular
frequencies. Gearbox frequencies of interest are the shaft rotation frequency, gear mesh frequency
and its correspondent harmonics and sidebands [5].
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The signals are commonly seen to have signatures from other components, plus the transmission
path and added noise submerge the signature of the component, that is the focus of the analysis.
As this happens, some signal processing methods are commonly applied to enhance the signature of
the analyzed mechanical component. Tandon and Choudhury [1] give a review of acoustic bearing
signals, noting that resonant modes of the structure carry the impulses due to the signal originating
from the gear fault. Ghasemloonia and Khadem [2] apply various methods, and conclude that
applying envelope analysis allows one to obtain the faulty frequencies of bearings, and predict the
evolution of the fault. They defend that filtering of the these carrier waves and demodulation, envelope
analysis, provides satisfactory results in detecting the faulty signatures.

It is thus necessary to apply band-pass filters to the measured signals in order to enhance the fault
signatures, which are carried by the resonant properties of the structure. The correct band-pass filter
parameters must then be selected in order to obtain the signal that allows the identification of the
fault. However, the detection of the band of frequencies on the spectrum and on time-signal is not
trivial. In past years the filter selection was based on educated guesses and on trial-and-error iteration
[1]. The appearance of Kurtogram [9]] promised to solve this problem, as it allowed an automatic
filter selection based on the maximization of the Spectral Kurtosis, however this method does not
always return the correct band for the filter. The Kurtogram is often seen to be unable to select the
bearing fault frequencies, whilst the CSC provides the correct filter selection [8]. The Kurtogram
provides, however, a method to automate the process, and it is commonly seen that the solution given
by Kurtogram is frequently derived as a first step [9]. Another process is the Scalogram [3] obtained
by using the Wavelet Transform, yielding a time-frequency domain representation. This however
does not represent the impulses having less magnitude, and fails to show the hidden periodicites of
the signal when these derive from random frequency components [[10]].

Due to the large variations, direct comparison of signatures is difficult, and thus statistical features
provide a reduced data set for the application of pattern recognition and tracking technique. Ideally,
these features are more stable and better behaved than the raw signature data itself [6]. With a
great number of features, the information is difficult to decompose, and thus methods that allow
the dimension reduction allow a visual examination of the full set of features at once. One possiblity
is the principal component analysis (PCA) [[7] , which is an unsupervised feature reduction method,
and another is the linear discrimant analysis (LDA), where both allow one to decrease the number
of features. In [[7], the authors used PCA to reduce 18 features to six efficient features, and obtained
the same accuracy in classifying the faulty states after training and testing the data. These methods
also allow to diagnose the faults, if the cluster of points for each state is well separated. The signal
processing and features should be well defined and determined for new cases, and the the new axis
rotation matrix from the PCA or LDA would locate the new data point to the correspondent condition.

2. Methodology

2.1 Proposed Method

The method presented in this paper is the application of Envelope Analysis by selecting the correct
band-pass filter taken from the maximum coefficients at the shaft speed determined by the cyclic
spectral correlation (CSC).

Fig. [[Jrepresents the procedure proposed in the present paper. The filter parameters are determined
from knowledge of the carrier frequencies that are modulated by the frequencies of interest, such as
the gear mesh frequency. Then Features are calculated on the demodulated signal and selected based
on their performance. Finally the PCA and LDA are applied to provide a solid method to reduce the
high dimensional space of the full features into clusters of different fault cases.
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2.2 Pre-Processing Methods

Two main methods are adopted to obtain clearer gearbox signals. One is cyclic spectral correlation
(CSC), which is used as the identification of the structure resonant modes, the carriers, and as selection
criterion for the band-pass filter, thus providing an alternative to the Kurtogram. The other is the
Envelope Analysis, where only the impulsive frequencies that carry the shaft frequencies are band-
pass filtered around said carrier frequencies.

Cyclic Spectral Correlation (CSC)

Cyclic spectral correlation (CSC), allows for the definition of appropriate filter bands by
identifying the cyclo-stationary aspects of the signal. This is made possible by a statistical descriptor
which measures the level of periodicity of a signal. The cyclo-stationarity of a signal x is defined as
the level of T'-periodicity of its autocorrelation R,,.

.1 T2 T T
Ruslt,r) = Jim [ (b= 3) (14 G (1)

The definition allows one to obtain the cyclo-stationarity of second order, which models well the
bearing signals, as well as the first order, which models well the gear signals. In fact, it efficiently
differentiates between these two [11].

The CSC determines the spectrum of the signal at each different periodic lag. In other words, it
shows the correlation levels at each carrier frequency f when modulated by the cyclic frequencies a.
The examination of these coefficients is where the CSC reveals the cyclo-stationary signals carriers
at their modulation (cyclic) frequency.
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Figure 2: Cyclostationary analysis of two faulty gearbox: a) chipped tooth ; b) missing tooth.

The analysis, besides the ability to reveal both hidden and deterministic signals, also allows
automation of the process of the Envelope Analysis. Assuming the speed of the gearbox shaft is
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known, the corresponding cyclic frequency coefficients are selected, and the maximum values are
extracted. Applying this method to an example given in fig]2] it is seen that the maximum value of
the chipped tooth for the shaft frequency of % results in a spectral frequency equal to 4.5 kHz. The
resonant modes due to the missing tooth impulses are shown to be different when compared to the
chipped tooth impulses, and at a cyclic correlation of % results in a wide band of frequencies centered
around 8.5 kHz. This is indeed the filter selection that occurred on fig[3| that enhanced the missing
tooth impulses.

Envelope Analysis

The fundamental basis to envelope analysis is to band-pass filter vibrations that occur at high
frequencies, thus removing the undesired mechanical component signatures, and enhancing the
signal-to-noise ratio.
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Figure 3: The process of Envelope Analysis for a faulty gearbox with acoustical signal.

The CSC determines the filter parameters from the speed reference. Afterwards the signal is
filtered with these parameters and the envelope is applied, so as to obtain the low frequencies of
interest.

3. Feature Extraction

3.1 Time Domain Features

Features are measured properties that provide information on an observed phenomenon, such as
the state of a gear in this case. The selected features are usually applied to obtain the amplitude levels
of the vibration signal after envelope analysis. The amplitudes in the time domain are theoretically
affected by the fault in that band of frequencies. Well-selected features will thus contain information
about possible faults in the structure. Selected features known to perform well for the studied type of
faults [4), 5] are:

e 75" Percentile (P75)

Shannon Entropy (Entghannon)
Logarithmic Entropy Energy (Entlog)
Standard Deviation (o)

Peak to Peak (PP)

ENA4

4 ICSV24, London, 23-27 July 2017



ICSV24, London, 23-27 July 2017

e Crest Factor (CF)
e Speed

3.2 Principal Component Analysis (PCA)

As it is difficult to visualize 8 features and to obtain more definitive conclusions towards
developing a diagnostic tool, these features are transformed into a lower dimensional space. This
dimensionality reduction can be established through the use principal component analysis (PCA).

PCA is a technique that transforms the m features of a measurement into a set of m uncorrelated
variables, referred to as principal components (PCs). The transformation is determined by the
eigenvectors of the covariance matrix between the feature values (vectors of dimension m) and defined
such that the first PCs contribute the most to the variance. In short, this process selects a vector that
maximizes the variance of the dataset, and the following orthogonal vectors to it that maximize the
remaining variance.

When it is assumed that a greater variability captures more information about the state of the
gears, and low variability is caused by noise, keeping only the first n < m PCs will still allow to
differentiate healthy and faulty gears while making visualization more practical.

While PCA can be used for dimensionality reduction, since it only takes the selected features
into account and does not use the information about gear states. This type of methods, that do not
incorporate information about the class (i.e. gear states in this application) where a measurement
belongs to are said to be unsupervised. In contrast supervised methods do utilize class information to
find the optimal transformation of the features.

3.3 Linear Discriminant Analysis(LDA)

Linear Discriminant Analysis (LDA) is a supervised method that can be used to perform
dimensionality reduction. Unlike PCA, the transformation generated by the LDA will group
measurements of the same class as close as possible with minimizing the variability in the class,
while maximizing variability between the classes.

By the nature of the method, LDA reduces the m features of the measurement to k - I variables,
with k being the number of different classes. In this application with k = 3 gear states, the
transformation with LDA will thus results in 2 variables.

4. Experimental Setup

The experiments were conducted in a machine fault simulator (MFS) from SpectraQuest, built
specifically for the study of mechanical damage, shown in figH]

Belt,Transmission Accelerometer Microphone
7 7 .|

Figure 4: SpectraQuest’s Machine Fault Simulator (MFS) test rig from Siemens.

The Gearbox faults are divided into three levels of damage imposed on the pinion : Healthy,
Chipped Tooth, and Missing Tooth. Figure [5|shows the pinions, for the healthy and faulty specimens.
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In this paper, only accelerometer signals in the z-direction (vertical) were considered.

Each measurment is 90 seconds long and is divided into 3-seconds observations. Signals are
acquired at 8 speeds, with a minimun of 16 revolutions each, resulting in a dataset with 720
observations in total.

Healthy Chipped Tooth Missing Tooth

Figure 5: Three pinions for the experimental test: a) healthy ; b) chipped tooth ; ¢) missing tooth.

The applied features for the fault diagnosis show a correlation with the speed of the shaft. In order
to discriminate them from the analysis, the various frequencies of interest are presented in Table [I]

Table 1: Frequencies of Interest for Different Speeds

Motor Speed 780 1020 1260 1500 1740 1980 2220 2460
Input shaft frequency (f,) 2.2 6.8 84 10 11.6 132 148 164
Gear Mesh Frequency (GMF) 86 115 144 172 201 229 265 293

5. Analysis

The same filter is applied to all three cases in order to compare them under the same conditions.
The signals are first compared without any pre-processing and then filtered around 4.5 kHz and 8.5
kHz.

Missing Tooth

Healthy

Figure 6: Order Tracked of the healthy pinion and missing tooth pinion

The results show that both the healthy case and the chipped tooth case present the same resonant
modes around the 4.5 kHz band, and that their variation is negligible for different speeds, where the
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same resonant modes are all around this band of frequencies. The missing tooth shows a different
band of resonant modes around the 8.5 kHz band, and similarly to the other two cases, these resonant
modes do not vary with the speed.

This selection provided with the correct carrier frequencies for the impulses as expected. Figure [
represents an angular re-sampled representation of the signals after performing the envelope analysis
of the healthy case at 4.5 kHz and the missing tooth case at 8.5 kHz. These show clearly one missing
tooth impulse per revolution, and the healthy case shows 18 impulses per revolution, one impulse for
each of the 18 teeth on the gear.
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Figure 7: 3D PCA plot of the Vibration Signals

Applying the PCA directly to the raw signals already allows to differentiate the three different
faults. Filter 1 provides the best results to distinguish the three fault levels, as all of them are separated
from each other for every measured speed in the PCA plot ( fig[7a]). This agrees with the analysis so
far, as for this filter parameters the envelope signals were seen to have a decreasing level of amplitudes,
from the healthy, through the chipped and until the missing. This trend is also represented in Fig[7b]
As Fig. [/c|shows, Filter 2 selected the frequencies of interest for the missing tooth signal, allowing to
distinguish the missing tooth even better. The samples corresponding to this gear fault are completely
separated from the other two gears, making visual identification of this fault becomes evident for all
speeds with better results than for the raw case.

Unlike PCA, which solely represents the data in an efficient manner, the focus of LDA is to
discriminate the classes efficiently. Due to this nature, dimensionality reduction applied with LDA
results in a better differentiation in a low dimensinal space compared to PCA.
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Figure 8: 2D LDA plot of the Vibration Signals

For the raw signals and with filter 1 applied, all faults can be diagnosed. Filter 2 is only able to
clearly distinguish missing tooth. The performance for the healthy and chipped tooth cases is clearly
lower compared to the analysis of the raw signal and Filter 1, as seen in fig.

5.1 Conclusions

In the present paper, gearbox faults were analysed using different signal processing techniques.
Envelope analysis enhances the fault signature, but its application depends on the filter selection.
Spectral Correlation proves to be a strong filter selection for the all vibration signals analyzed,
resulting in clear signals for each fault case. With the pre-processed signals, the features extracted

ICSV24, London, 23-27 July 2017 7



ICSV24, London, 23-27 July 2017

relevant information that allows differentiation between faulty signals. The analysis concludes that
spectral correlation is a strong tool for filter selection, and the methodology correctly diagnoses faults.

LDA shows good results separating the cases without any filter, but being a classification method,

a label needs to be assigned. Filtering around the chipped tooth resonant modes shows clear separation
of the three cases, using PCA, making the application of the remaining filter redundant, as the missing
tooth fault is already diagnosed with the former filter.
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