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This study investigates the feedback control of nonlinear thermoacoustic oscillations. A particular
aim is to investigate the efficacy of feedback control when the system’s nonlinear dynamics are
rich. The flame is modelled by the kinematic G-equation. The acoustic model is based on the
experimental geometry of R. Balachandran [1], accounting for a spatially non-uniform unsteady
flow field and curvature corrections on the flame speed. Crucially, we see that both the gain
and the phase vary with the forcing amplitude. This means that, when the flame dynamics is
coupled with the acoustic response of the combustor, bifurcations of both the supercritical and
subcritical type are possible. This coupled system is in turn coupled to a feedback controller,
whose objective is to completely eliminate oscillations. Robust control techniques are used to
design the controller, which is then applied to both the linear and fully nonlinear system. Our
analysis highlights how controllers designed on the linear flame response (FTF) fail in stabilising
thermoacoustic oscillations due to subcritical phenomena. On the other hand, controllers designed
on the nonlinar flame response (FDF) are more robust in that they can control oscillations arising
because of both super- and subcritical bifurcations.
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Introduction

Thermoacoustic oscillations can occur whenever combustion takes place inside an acoustic res-
onator. Unsteady combustion is an efficient acoustic source, and combustors tend to be highly reso-
nant systems. Therefore, for suitable phase between unsteady combustion and acoustic perturbations,
large-amplitude self-excited oscillations can occur. Most recent studies of combustion oscillations
have focused on low NOx premixed gas turbine combustors, which are particularly susceptible to
thermoacoustic instability [2]. These studies typically assume linear acoustics: the low Mach number
means that the acoustic pressure fluctuations are small even when the acoustic velocity fluctuations
are large [3]. The heat release is therefore treated as the only nonlinear element in the coupled system.

When a thermoacoustic system is unstable, oscillations grow in amplitude, and typically saturate
to a periodic motion known as a limit cycle. Fig. 1 shows the steady state amplitude, a, for two types
of nonlinear behaviour that can be observed in linearly unstable thermoacoustic systems. The first
is a supercritical Hopf bifurcation, in which the limit cycle amplitude grows gradually as the control
parameter, P , increases past Pc which is the critical point through which the linear stability of the
system changes. The second is a subcritical bifurcation, in which the limit cycle amplitude grows
suddenly as P increases past Pc, and for which there are two stable solutions in the region between
Pf (the fold point) and Pc. This is known as the bistable region: even if the system is linearly stable,
a strong enough perturbation can trigger large amplitude oscillations.
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Figure 1: The limit cycle amplitude, a, as a function of a control parameter, P , for (a) a supercritical
bifurcation and (b) a subcritical bifurcation. At the critical value Pc a Hopf bifurcation occurs, and
the system becomes linearly unstable. Pf is the fold point in a subcritical bifurcation, below which
no oscillations can be sustained. The parameter region enclosed between Pf and Pc is bistable.

The frequency and amplitude of limit cycles arising from both super- and subcritical Hopf bi-
furcations can be found in the frequency domain using a Flame Describing Function (FDF) and the
harmonic balance method [4, 5]. This involves measuring the flame’s response to harmonic forcing
for different forcing frequencies and forcing amplitudes. By assuming that the flame’s response to a
given forcing frequency is predominately at that frequency (i.e., by discarding higher harmonics using
the so-called filtering hypothesis [6]), the FDF provides the flame’s gain and phase as a function of
forcing frequency and forcing amplitude. Dowling [7] calculated the FDF for a kinematic model of a
premixed ducted flame and found that the limit cycle amplitude of the coupled system was determined
by the amplitude-dependence of the gain. Noiray et al. [4] measured the FDF of a premixed flame
experimentally and found that the limit cycle amplitude of the coupled system was determined by the
amplitude-dependence of both the gain and the phase of the flame’s response.

As well as looking at the effect of a simple saturation nonlinearity on the dynamics of thermoa-
coustic oscillations, Dowling [3] also looked at implications for feedback control. It was found that
a feedback controller designed on the linear response (FTF), as well as stabilising the linear system,
was also stabilising when applied from an already-established limit cycle. A Describing Function
analysis was used to explain why the controller was still successful when applied to the limit-cycling
system. It is important to remember here that, due to the relatively simple nature of the flame’s nonlin-
earity, there was no amplitude dependence of the flame’s phase response, and therefore the subcritical
bifurcations shown in Fig. 1 (b) could not occur. In more recent work, the amplitude dependence of
the flame’s phase response has been shown to play an important role for the dynamics of the coupled
system. In particular, the subcritical bifurcations depicted in Fig. 1 (b) can occur. A recent study
showed that, using H∞ loop-shaping techniques, one can guarantee that a controller designed on a
certain amplitude level will be able to stabilise the system at other amplitudes, too [8]. Our aim here
is to investigate the efficacy of feedback control when the system’s nonlinear dynamics are rich. We
find that controllers designed using the FTF only, although able to stabilise oscillations arising from
supercritical bifurcations, will fail in stabilising limit cycle oscillations arising from subcritical bi-
furcations. On the other hand, controllers designed using the FDF are more robust and can stabilise
oscillations arising from both types of bifurcations.
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Thermoacoustic modelling

Acoustics

The acoustic configuration examined in this study is based on the experimental geometry of Bal-
achandran et al. [1], and is shown in Fig. 2. We account for mean flow effects, area/temperature

Figure 2: Left: schematic of the acoustic network modelled using LOTAN. Right: acoustic velocity
response at the flame location to heat release perturbations. The frequencies of two acoustic modes
are highlighted.

changes across the combustor, and we use simple models for the acoustic reflection coefficients at the
inlet (closed) and outlet (open, with corrections). The geometry is implemented using LOTAN [9].
The acoustic response of the geometry to heat release perturbations is extracted and fit onto a state-
space model, using the procedure described in [5]. This is shown in Fig 2, where the frequencies of
the first two acoustic modes are highlighted. When coupling the acoustics with the flame (see next
sections), we find that thermoacoustic oscillations always occur at frequencies close to those of these
acoustic modes.

Flame

The flame dynamics chosen to close the thermoacoustic feedback loop in our system is that of
a laminar, conical flame. This is because low-order models for the turbulent flame that stabilise in
the combustor shown in Fig. 2 are still being developed. The G-equation model for a laminar conical
flame, instead, is well established in the literature [10], and contains all the features we are looking for
here, i.e., a variation of both the gain and phase flame responses with respect to the forcing amplitude
a ≡ A/u, where A and u are the dimensional values of the perturbation and mean flow velocities,
respectively. The numerical method used to simulate the flame dynamics is the same of that described
in [5]. The Flame Describing Function for this model (gain and phase) is obtained by forcing the
flame base with a sinusoidal input u′/u = a sin(ωt), and varying the values of both the amplitude a
and frequency f = ω/(2π) over wide ranges.

The resulting Flame Describing Function, defined as

F(ω, a) ≡ q̂1(ω,A)

Q

u

A
(1)
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Figure 3: Left: the Flame Describing Function, F(s, a), for five forcing amplitudes: gain (top) and
phase (bottom). Right: closed loop thermoacoustic feedback loop. In our model, only u′ affects the
flame dynamics. We will however use p′ to actuate the controller.

is plotted in Fig. 3. Because both the gain and the phase vary with forcing amplitude, bifurcations of
both the supercritical and subcritical type are possible (see Fig. 1).

Stability map

By coupling the acoustic velocity response to the FDF as shown in Fig. 3 (b), we can generate
a stability map as the one shown in Fig. 4 We find that only two modes can have a positive growth

Figure 4: Stability maps of the closed-loop thermoacoustic systems. The bifurcation parameters α
varies the size of the flame of the acoustics with respect to the flame. Colours highlight the regions
in which (at least) a thermoacoustic mode has a positive growth rate. Both super- and subcritical
phenomena can be observed.

rate; they have frequencies close to those of the first two acoustic modes of the combustor. We have
highlighted with colours the regions in which these thermoacoustic modes have positive growth rates.
The bifurcation parameter used, α ≡ τfl/τac, is the ratio between the flame time scale τfl ≡ Lf/u
and the acoustic time scale τac ≡ L/c, where Lf is the flame length, L the combustor length, and c
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Figure 5: Sketch of the feedback control system. The thermo-acoustic response is combined in a
single plant, P , to simplify the robust control analysis. On the right, arbitrary variable names are used
for the input/outputs of the controlled system, and external disturbances (see eq. (6)).

the speed of sound. This was shown to be a key parameter in the stability of thermoacoustic systems
in [11].

Let us now relate the Describing Function analysis (in particular, its description of the variations
in the flame’s gain and phase with forcing amplitude) to the supercritical and subcritical bifurcations
seen in Fig. 1. If the flame’s phase does not change with forcing amplitude, then one would expect to
find only supercritical bifurcations (provided that the flame’s gain decreases with increasing forcing
amplitude, which is a sensible assumption). This is because as the forcing amplitude increases, the
positive feedback between unsteady heat release and acoustics can only weaken, since the flame’s
gain is decreasing, while the phase between them remains fixed. If both the gain and the phase
vary, however, then both supercritical and subcritical bifurcations are possible. In this case, even if
we assume that the flame’s gain decreases with increasing forcing amplitude as before, variations in
phase can actually lead to stronger positive feedback between unsteady heat release and acoustics.

This is indeed what we observe from Fig. 4: for example, at α = 140 the system is linearly unsta-
ble, and oscillations with a frequency of about 320 Hz will grow and saturate at an amplitude a ≈ 0.2.
On the other hand, at α = 120, the system is linearly stable; however, perturbing the system with a
signal having a & 0.15, triggers subcritical phenomena and an instability arises which saturates at an
amplitude a ≈ 0.3. This is consistent with experimental observations in which the experimentally-
determined FDF exhibits significant changes in both gain and phase, as the one discussed in [4].

Controller design

Our task, therefore, is to design a controller that is sufficiently robust to provide closed-loop sta-
bility even in the presence of the flame’s changes in gain and phase, and predict the changes in the
dynamics of the coupled system that this will cause. This is shown in Fig. 5 (a): the coupled ther-
moacoustic system is represented by the two lower blocks. Notice that the flame dynamics, F(s, a),
is a function of both the Laplace variable, s, and the forcing amplitude, a. The feedback controller
(top block in Fig. 5 (a)) is denoted by C (s) and is designed using robust control techniques [12] to
stabilise both the linear and fully nonlinear system.

To do so we will employ model-based linear control. There exist many methods for designing
linear controllers based on linear models. These include classical loop-shaping; pole placement meth-
ods; Linear Quadratic and Linear Quadratic Gaussian control; and H2- and H∞-based methods. The
method chosen here is H∞ loop-shaping [13, 8], a modern synthesis method which is well-favoured
in the control community. A particular strength is the way in which it consolidates classical control
with modern control in a powerful and pleasing way [12].

In order to introduce the method, we must first do three things: (i) define a state-space model;
(ii) move into the frequency domain; (iii) introduce the H∞-norm. Consider a linear, time-invariant
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dynamical system given in state-space form as

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t),
(2)

where u ∈ Rp is a vector of inputs, y ∈ Rq is a vector of outputs, x ∈ Rn is the system state of
dimension n, and A, B , C and D are suitably-dimensioned matrices.

Taking Laplace transforms of (2) and rearranging, we arrive at the transfer function, P(s), defined
by y(s) = P(s)u(s), with

P(s) ≡ C (sI − A)−1B + D. (3)

For p inputs and q outputs, P(s) is a matrix of dimension q × p. We can now introduce theH∞ norm
of a transfer function, which is defined for stable systems as

‖P‖∞ ≡ max
ω

σ̄(P(jω)). (4)

That is, an input that comes arbitrarily close to attaining the H∞ norm concentrates its energy at the
frequency where the gain of the system—as measured by the maximum singular value of its frequency
response matrix—is largest. In the time domain this means that

‖P‖∞ = sup
u6=0

‖Pu‖2
‖u‖2

. (5)

H∞ loop shaping

Having moved into the frequency domain and defined the H∞ norm, we now define the standard
feedback arrangement considered in the H∞ loop-shaping method, together with the quantity b

P,C

used to characterize it:

P (s)

C(s)

yud

n
b
P,C
≡

∥∥∥∥[PI
]

(I − CP)−1
[
−C I

]∥∥∥∥−1
∞
. (6)

Here d represents disturbances at the input and n represents sensor noise at the output. Note that the
expression given for b

P,C
is valid only if the feedback interconnection of P and C is stable, otherwise,

b
P,C

= 0.
b
P,C

is therefore the inverse of the H∞ norm from disturbances d and noise n to u and y in
the standard feedback configuration shown above. The norm cannot be made smaller than 1, which
means that, for any P and C , b

P,C
lies in the range [0, 1]. A simple interpretation of b

P,C
is as fol-

lows: a large value of b
P,C

implies that the H∞ norm of the transfer function matrix in (6) remains
small over all frequencies and all directions. The use of b

P,C
as a performance measure is therefore

motivated by the fact that it bounds the gain of all four closed-loop transfer functions at any point in
the loop. Furthermore, for single-input-single-output systems, the classical gain and phase margins
of the closed-loop can be related to b

P,C
, providing an important and pleasing link to classical control.

Glover & McFarlane [14] show that b
P,C

can be maximized over all stabilising C to give

bopt(P) = sup
C
b
P,C
, (7)

and this is the optimization that theH∞ loop-shaping procedure achieves.

6 ICSV24, London, 23-27 July 2017



ICSV24, London, 23-27 July 2017

Figure 6: Supercritical results (α = 140): a controller designed on the FTF is able to stabilise either
starting from fixed point (left) or limit cycle (right) conditions. In grey, the time evolution of veloc-
ity/pressure when the controller is absent. In black, the behaviour of the system when the controller
is on (or switched on after a time interval).

Results

Supercritical case

We start choosing α = 140. Performing time domain simulations, with the same procedure as
that described in [5], we find that, consistently with the frequency domain analysis shown in Fig. 4,
the uncontrolled system is unstable, and the amplitude of the acoustic velocity fluctuations saturates
at an amplitude a ≈ 0.2, as shown in Fig. 6. Also the frequency of the steady state oscillations
accurately matches the one predicted with the harmonic balance method. For this case, we find that
designing the controller using the FTF only is good enough to stabilise the thermoacoustic system
from both the fixed point (infinitesimally small amplitude) and from the limit cycle (finite amplitude).
This is because the closed-loop growth rate predicted by the harmonic balance method monotonically
decreases with the amplitude at this value of α (as was for [3]). Therefore the linear limit is the most
unstable situation: designing a controller on the linear response is sufficient to guarantee stabilisation
also from limit cycle conditions.

Subcritical case

Figure 7: Subcritical results (α = 120): a controller designed on the FTF is unaware of possible
triggering phenomena, and cannot stabilise the oscillations (left). On the other hand, a controller
which is guaranteed to be robust across the entire FDF achieves much better performance (right).

When α is chosen to be 120, instead, the system is bistable. It is linearly stable, but a large
enough perturbation triggers finite amplitude oscillations. Designing the controller from the FTF is
not good enough to stabilise the oscillation from limit cycle, as shown in Fig. 7, left. This is because
the (linear) closed-loop system is not “aware” that the pole with frequency 320 Hz is potentially
dangerous. However, by designing the controller so that it is robust across the entire FDF (see previous
section and [8]), the controller becomes “aware” of subcritical pheonomea and is able to stabilise also
oscillations arising from triggering effects, as shown in Fig. 7, right.
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Conclusions

In this study, robust feedback control of thermoacoustic oscillations has been considered. A pro-
cedure similar to that outline in [8] has been followed to design controllers which are guaranteed to
perform across the entire FDF amplitude range (evaluated numerically using a G-equation model).
However, in contrast to [8], here emphasis is put on when such an analysis is necessary. Using a
dynamical system perspective, we differentiate between two scenarios. The first is the supercritical
case, in which the system is linearly unstable and the harmonic balance procedure predicts the growth
rate to monotonically decrease with the oscillation amplitude level. This case was already considered
by [3], and we verify that no robust control techniques are required, as the controller designed on
the FTF is able to stabilise also large amplitude oscillations. The second possibility is the subcritical
case, in which the system is bistable. Here the FTF information only is insufficient to design effective
controllers. This is because the FTF predicts the system to be linearly stable, but ignores that finite
amplitude perturbations may still trigger self-sustained oscillations. We find that, in this scenario, a
controller designed on the FTF is unable to stabilise these triggered oscillations. On the other hand, a
controller designed on the entire FDF usingH∞ techniques, is able to control also oscillations arising
from subcritical phenomena.
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