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This note tackles the active disturbance rejection problem in accordance with the robust, resilient 

observer-based regulation problem for a class of linear systems with structured uncertainty. The 

stability of the technique is guaranteed by employing the direct Lyapunov theorem. With aiming 

at addressing the fragility issue, two sets of time-dependent bounded uncertain terms are admitted 

for the controller gain and observer gain in the synthesis process. Then, the proposed control 

system is transformed into linear matrix equality/inequalities (LME/LMIs) framework. Next, the 

closed-loop system is implemented in real-time experiments on a vibrating system to evaluate its 

disturbance rejection performance. For this purpose, the mismatch disturbance scenario is 

investigated on a multi-input single output cantilever piezo-laminated beam. The nominal 

mathematical model of the smart structure is reduced in the frequency band with a limited number 

of states in the structure of parametric modeling. The classical state-feedback problem is replaced 

with state-observation technique to formulate an output-feedback controller. Finally, the proposed 

combination is implemented experimentally on the full-order system. The results confirm that the 

closed-loop configuration has a robust performance in terms of the active disturbance attenuation 

with the structured uncertainty and the presence of the nonlinear Lipschitz stable dynamics.  

 Keywords: vibration control, state observer, resilient controller, smart structure  

 

1. Introduction 

The non-fragility of the control system can be studied by investigating the sensitivity of the 

controller (observer) with respect to feedback- (observer-) gain [1]. The uncertainty in the controller 

gain as a key design limitation is inspected by Corrado and Haddad [2]. The control design procedure 

is extended to address the proposal of a novel robust, resilient static output feedback regulator for 

systems with controller gain uncertainty. Wang et al., [3] proposed a non-fragile observer design 

technique by use of the multiple Lyapunov function method and delta-operator theory. Lien et al., [4] 

proposed a non-fragile observer based controller for linear systems. However, the numerical design 

example is limited to a deterministic mathematical state-space model. This issue is tackled in Oveisi 

et al., [5] for structures with mismatch uncertainties in system elements. 

The modern structural design procedure requires the properties such as self-adaptation and smart-

ness in order to achieve a multi-functional, practical, robust, environmentally-oriented performance. 

This perception is handled by sensitive multi-domain transducers that can be instrumented together 

with the host structure and robustly react to the environmental stimuli. Such adaptive structural con-

figurations are widely used in mechanical assemblies to control the stress, strain, and sound [6-7]. 
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These active structures require sensor/actuator elements that can then be used to withstand their sen-

sitivity to unwanted disturbances [8]. Piezoelectric actuators are widely utilized due to their capability 

of pairing mechanical tension and electric field [9, 10].  The development of finite element method 

(FEM) and analytical methods in modeling these transducers progressed at the same rapid step as 

active structural control methods [11]. Applications of non-fragile controllers are widely studied. For 

instance, Du et al. tackled the application of non-fragile 𝐻∞ robust controller on an uncertain four 

degree of freedom building model by an appropriate use of Bounded Real Lemma (BRL) [12]. Yazici 

et al., [13] proposed a robust delay-dependent controller by using the Lyapunov–Krasovskii func-

tional (LKF) and BRL in order to reach to a minimization algorithm that gives a sub-optimal solution 

for the disturbance rejection controller in the presence of structured uncertainty. They implemented 

the designed controller on a building model subjected to seismic excitations. Ramakrishan and Ray 

presented a delay-dependent non-fragile 𝐻∞ controller for a nonlinear system with time-varying de-

lay using LKF [14].  

The main goal of this paper is to propose a controller that can handle the fragility problem of both 

the controller and observer elements in the presence of structured uncertainty, unmodelled dynamics 

of the stable linear or nonlinear type under external excitation. The dynamics of the controller is 

presented in section 2. The process of performance evaluation for the control system is carried out by 

implementation on a vibrating system. In section 3, the experimental setup is introduced, and in sec-

tion 4, the mathematical procedure of extracting the nominal reduced-order dynamics of the plant is 

discussed. Finally, in section 5, the simulation and experimental results are explained in more details. 

2. General style parameters 

2.1 System Definition 

Consider the linear time-invariant (LTI) MIMO system in Eq. (1) in the state space form. 

𝑥̇ = (𝐴 + ∆𝐴)𝑥 + 𝐵𝑢 + 𝐻𝑤 + 𝑓, 𝑦 = 𝐶𝑥 + 𝐷𝑢, (1) 

where 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚, 𝑤 ∈ ℝ𝑟, 𝑓 ∈ ℝ𝑛, and 𝑦 ∈ ℝ𝑞 are the state, input, square-integrable external 

disturbance, nonlinearity/un-modelled dynamics, and output vectors, respectively. In addition, 𝐴 ∈
ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, 𝐻 ∈ ℝ𝑛×𝑟 , 𝐶 ∈ ℝ𝑠×𝑛, and 𝐷 ∈ ℝ𝑠×(𝑚+𝑟) are state, input, disturbance, output, and 

feedthrough constant matrices. It is assumed that the system in Eq. (1) is stabilizable and detectable. 

Moreover, ∆𝐴 is the associated unknown structured perturbation matrix which is time-dependent. In 

order to avoid non-convex problem, the uncertainty due to the input matrix (∆𝐵) is not investigated 

in this study. It should be mentioned that, from the vibration control point of view, the unmod-

elled/nonlinear dynamics satisfy the Lipschitz uncertainty condition [15, 16] and the uncertainty of 

system matrix should satisfy the mismatch condition [17, 18]. Dynamics of the proposed non-fragile 

observer is defined as Eq. (2) 

𝑥̇̂ = (𝐴 + ∆𝐴)𝑥̂ + 𝐵𝑢 − (𝐿 + ∆𝐿)[𝑦 − 𝑦̂], 𝑦̂ = 𝐶𝑥̂, (2) 

where 𝑥̂ and 𝑦̂ present the estimation of the states and of the output, respectively and 𝐿, ∆𝐿 ∈ ℝ𝑛×𝑞 

are the observer gain and observer perturbation associated with fragility of the observer. In addition, 

the non-fragile observer-based control effort is considered to be 𝑢 = (𝐾 + ∆𝐾)𝑥̂, where 𝐾, ∆𝐾 ∈
ℝ𝑚×𝑛 are the feedback gain and feedback perturbation matrices, respectively. It is assumed that the 

perturbation matrices are independent of 𝐿 and 𝐾 and have the structure ∆𝐾 = 𝑀𝐾𝐹𝐾𝑁𝐾, and ∆𝐿 =
𝑀𝐿𝐹𝐿𝑁𝐿 , in which 𝑀𝐾 , 𝑁𝐾, 𝑀𝐿 , and 𝑁𝐿 are known matrices with appropriate dimension. However, the 

time-varying unknown matrices with Lebesgue-measurable elements [17],  𝐹𝐾(𝑡) and 𝐹𝐿(𝑡), should 

satisfy 𝐹𝐾
𝑇𝐹𝐾 ≤ 𝐼, and 𝐹𝐿

𝑇𝐹𝐿 ≤ 𝐼, correspondingly. Moreover, it is assumed that, there exist positive 

scalars, 𝑎 and 𝑔, such that ‖∆𝐴‖ ≤ 𝑎, and ‖𝑓‖ ≤ 𝑔‖𝑥‖. By defining the estimation error as 𝑒 = 𝑥 −
𝑥̂, using (1) and (2), the dynamics of the states and the estimation error are presented as Eq. (3) 

𝑥̇ = ((𝐴 + ∆𝐴) + 𝐵(𝐾 + ∆𝐾))𝑥 − 𝐵(𝐾 + ∆𝐾)𝑒 + 𝐻𝑤 + 𝑓, 

𝑒̇ = (𝐴 + ∆𝐴 + (𝐿 + ∆𝐿)𝐶)𝑒 + 𝐻𝑤 + 𝑓, 
(3) 
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2.2 Main Results 

Theorem 1. The uncertain system (1) together with the observer system (2) is quadratically stable 

and satisfies the 𝐻∞ norm constraint ‖𝑇𝑦𝑤‖
∞

< 𝛾0, if there exist two positive definite symmetric ma-

trices 𝑃, 𝑅 ∈ ℝ𝑛×𝑛 , positive scalars 𝜀𝑖, 𝑖 = 1,2, … ,5, and matrices 𝑃̂ ∈ ℝ𝑚×𝑚, 𝐿̂ ∈ ℝ𝑛×𝑞 , and 𝐾̂ ∈
ℝ𝑚×𝑛 such that the following LMI/LME system is minimized 

min 𝛾 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

Ω = [
𝜒 𝜓 𝜙
 𝜔1 0
∗  𝜔2

] < 0, 

𝑃𝐵 − 𝐵𝑃̂ = 0, 

𝜒 =

[
 
 
 
𝑍11 −𝐵𝐾̂ 𝑃𝐻 𝜀5𝑁𝐾

𝑇

 𝑍22 𝑅𝐻 −𝜀5𝑁𝐾
𝑇

  −𝛾𝐼 0
∗   −𝜀5𝐼 ]

 
 
 

, 𝜓 = [
𝑎𝑃 𝑔𝑃 𝑃𝐵𝑀𝐾

0
], 

𝜙 = [
0

𝑎𝑅 𝑔𝑅 𝑅𝑀𝐿 𝜀5𝐶
𝑇𝑁𝐿

𝑇

0
] , 𝜔1 = diag(−𝜀1, −𝜀3, −𝜀5), 

𝜔2 = diag(−𝜀2, −𝜀4, −𝜀5, −𝜀5). 

(4) 

where  

𝑍11 = 𝐴𝑇𝑃 + 𝑃𝐴 + 𝐾̂𝑇𝐵𝑇 + 𝐵𝐾̂ + 𝐶𝑇𝐶 + 𝜀1𝐼 + 𝜀3𝐼 + 𝜀4𝐼, 
𝑍22 = 𝐴𝑇𝑅 + 𝑅𝐴 + 𝐶𝑇𝐿̂𝑇 + 𝐿̂𝐶 + 𝜀2𝐼. 

Moreover, 0 represents the zero matrix with appropriate dimension. The robust non-fragile observer 

and controller gain are given by 𝐾 = 𝑃̂−1𝐾̂, 𝐿 = 𝑅−1𝐿̂. 

2.3 Preliminary Results and Proof 

Here, some preliminary Lemmas are introduced that will be used in the proof of Theorem 1. 

Lemma 1. [19] For two arbitrary vectors such as 𝑝, 𝑞 the following inequality is valid for 𝜖 > 0 

𝑝𝑇𝑞 + 𝑞𝑇𝑝 ≤ 𝜖𝑝𝑇𝑝 + 𝜖−1𝑞𝑇𝑞. (5) 

Lemma 2. [20] For real matrices Σ,Ψ, Χ and symmetric matrix 𝑀, the first statement can be guar-

anteed iff the second one holds for a positive scalar 𝜁 and ΨTΨ ≤ I, 
1) 𝑀 + ΣΨΧ + ΧTΨTΣT < 0,  
2) 𝑀 + 𝜁−1 ΣΣT + 𝜁−1 (𝜁ΧT)(𝜁X) < 0.  

(6) 

Lemma 3. [20] The linear system 𝑥̇ = 𝐴𝑥 + 𝐻𝑤,  𝑦 = 𝐶𝑥,  satisfies the 𝐻∞  norm constraint 

‖𝑇𝑦𝑤‖
∞

< 𝛼 with Lyapunov function 𝑉(𝑥) = 𝑥𝑇Μ𝑥,Μ > 0 if for 𝑡 > 0, 

𝑉̇ + 𝑦𝑇𝑦 − 𝛼2𝑤𝑇𝑤 < 0. (7) 

Lemma 4. [5, 20] For a given matrix 𝑆 = [
𝑆11 𝑆12

𝑆12
𝑇 𝑆22

], with symmetric 𝑆11 and symmetric negative 

definite 𝑆22 the following two statements are equivalent 

1) 𝑆 < 0, 
2) 𝑆11 − 𝑆12𝑆22

−1𝑆12
𝑇 < 0.   

(8) 

Proof. Consider the following Lyapunov function 

𝑉 = 𝑥𝑇𝑃𝑥 + 𝑒𝑇𝑅𝑒, (9) 

by derivation of Eq. (9) with respect to time along the system trajectories, one can obtain 
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𝑉̇ = 𝑥𝑇𝐴𝑇𝑃𝑥 + 𝑥𝑇∆𝐴𝑇𝑃𝑥 + 𝑥𝑇𝐾𝑇𝐵𝑇𝑃𝑥 + 𝑥𝑇∆𝐾𝑇𝐵𝑇𝑃𝑥 − 𝑒𝑇𝐾𝑇𝐵𝑇𝑃𝑥 − 𝑒𝑇∆𝐾𝑇𝐵𝑇𝑃𝑥
+ 𝑤𝑇𝐻𝑇𝑃𝑥 + 𝑓𝑇𝑃𝑥 + 𝑒𝑇𝐴𝑇𝑅𝑒 + 𝑒𝑇∆𝐴𝑇𝑅𝑒 + 𝑒𝑇𝐶𝑇𝐿𝑇𝑅𝑒 + 𝑒𝑇𝐶𝑇∆𝐿𝑇𝑅𝑒
+ 𝑤𝑇𝐻𝑇𝑅𝑒 + 𝑓𝑇𝑅𝑒 + 𝑥𝑇𝑃𝐴𝑥 + 𝑥𝑇𝑃∆𝐴𝑥 + 𝑥𝑇𝑃𝐵𝐾𝑥 + 𝑥𝑇𝑃𝐵∆𝐾𝑥
− 𝑥𝑇𝑃𝐵𝐾𝑒 − 𝑥𝑇𝑃𝐵∆𝐾𝑒 + 𝑥𝑇𝑃𝐻𝑤 + 𝑥𝑇𝑃𝑓 + 𝑒𝑇𝑅𝐴𝑒 + 𝑒𝑇𝑅∆𝐴𝑒
+ 𝑒𝑇𝑅𝐿𝐶𝑒 + 𝑒𝑇𝑅∆𝐿𝐶𝑒 + 𝑒𝑇𝑅𝐻𝑤 + 𝑒𝑇𝑅𝑓. 

(10) 

Then, by utilizing Eq. (5) on the terms with uncertainty in system matrix and unmodelled dynamics, 

one can obtain 

𝑥𝑇∆𝐴𝑇𝑃𝑥 + 𝑥𝑇𝑃∆𝐴𝑥 ≤ 𝑥𝑇(𝜀1𝐼 + 𝜀1
−1𝑎2𝑃2)𝑥, 

𝑒𝑇∆𝐴𝑇𝑅𝑒 + 𝑒𝑇𝑅∆𝐴𝑒 ≤ 𝑒𝑇(𝜀2𝐼 + 𝜀2
−1𝑎2𝑅2)𝑒, 

𝑓𝑇𝑃𝑥 + 𝑥𝑇𝑃𝑓 ≤ 𝑥𝑇(𝜀3𝐼 + 𝜀3
−1𝑔2𝑃2)𝑥, 

𝑓𝑇𝑅𝑒 + 𝑒𝑇𝑅𝑓 ≤ 𝑥𝑇(𝜀4𝐼)𝑥 + 𝑒𝑇(𝜀4
−1𝑔2𝑅2)𝑒. 

(11) 

By using Lemma 2 and assuming ℒ𝑇 = [𝑥𝑇 𝑒𝑇 𝑤𝑇], the uncertain terms due to the fragility of 

controller and observer gain can be rewritten as 

ℒ𝑇 [
∆𝐾𝑇𝐵𝑇𝑃 + 𝑃𝐵∆𝐾 −𝑃𝐵∆𝐾 0

 𝐶𝑇∆𝐿𝑇𝑅 + 𝑅∆𝐿𝐶 0
∗  0

] ℒ ≤ ℒ𝑇Ω1ℒ, (12) 

where * presents the lower left triangle terms which are the transpose of the upper right ones and Ω1 

is presented as 

Ω1 = [
𝑌111 −𝜀5

−1(𝜀5
2𝑁𝐾

𝑇𝑁𝐾) 0
 𝑌122 0
∗  0

], 

𝑌111 = 𝜀5
−1𝑃𝐵𝑀𝐾𝑀𝐾

𝑇𝐵𝑇𝑃 + 𝜀5
−1(𝜀5

2𝑁𝐾
𝑇𝑁𝑁), 

𝑌122 = 𝜀5
−1𝑅𝑀𝐿𝑀𝐿

𝑇𝑅 + 𝜀5
−1(𝜀5

2𝐶𝑇𝑁𝐿
𝑇𝑁𝐿𝐶) + 𝜀5

−1(𝜀5
2𝑁𝐾

𝑇𝑁𝐾). 

(13) 

Via Lemma 3 and Eqs. (10-13) one can obtain Eq. (14) as 

𝑉̇ − 𝛾0
2𝑤𝑇𝑤 + 𝑦𝑇𝑦 = ℒ𝑇Ωℒ, (14) 

where, 

Ω = Ω1 + Ω2 + Ω3, 

Ω2 = [

𝑌211 −𝑃𝐵𝐾 𝑃𝐻
 𝑌222 𝑅𝐻

∗  −𝛾0
2𝐼

] , Ω3 = [
𝑌311 0 0

 𝑌322 0
∗  0

], 

𝑌211 = 𝐴𝑇𝑃 + 𝑃𝐴 + 𝐾𝑇𝐵𝑇𝑃 + 𝑃𝐵𝐾 + 𝐶𝑇𝐶, 
𝑌222 = 𝐴𝑇𝑅 + 𝑅𝐴 + 𝐶𝑇𝐿𝑇𝑅 + 𝑅𝐿𝐶, 

𝑌311 = 𝜀1𝐼 + 𝜀1
−1𝑎2𝑃2 + 𝜀3𝐼 + 𝜀3

−1𝑔2𝑃2 + 𝜀4𝐼, 
𝑌322 = 𝜀2𝐼 + 𝜀2

−1𝑎2𝑅2 + 𝜀4
−1𝑔2𝑅2. 

(15) 

Consequently, by assuming 𝑃𝐵 = 𝐵𝑃̂, 𝑃̂𝐾 = 𝐾̂,  𝑅𝐿 = 𝐿̂,  and 𝛾 = 𝛾0
2,  and successively using the 

Schur complement on Eqs. (14) and (15), the LMI (4) can be obtained. That completes the proof.    

■ 

Remark 1. The LMI in Eq. (4) is affined on the subject to the defined matrices since it is guaranteed 

by the use of the LME conversion, which simply transforms a non-convex problem to a convex one. 

This non-convexity is due to the introduction of the observation error in the Lyapunov equation.  

3. Experimental setup 

The proposed controller has been tested on the clamped-free smart beam made of an aluminium 

core layer with two piezo-actuators (DuraActTM P-876.A15) that are attached on one side. The geo-

metrical constants of the vibrating system under study can be seen in Fig. 1. The velocity of the lateral 

vibration of the free end of the beam is measured as the output signal obtained by a laser Doppler 

vibrometer VH-1000-D (see Fig. 2). The ADC, DAQ, and DAC in Fig. 2 are representing the analog 

to digital converter (DS2004), dSPACE digital data acquisition board (DS1005), and digital to analog 
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converter (DS2102). In addition, due to the working voltage range for piezo-patches, the control sig-

nal is amplified by the PI E-500 Amplifier. In order to implement the proposed control system, SIM-

ULINK platform is used to compile the control algorithm and subsequently to upload it to dSPACE 

board DS1005. The real time signals are accessible through the software ControlDesk. 

Remark 2. In the proposed system, the control input is applied through the piezo-actuator channels 

and the mechanical disturbance acts through a mismatch disturbance channel which may be realized 

as the signal generated through the shaker (Bruel & Kjaer Type-4809).  

 

Figure 1: Geometry of the smart beam. 
 

Figure 2: Experimental rig for validating 

the performance of the control system. 

4. MODELLING THE MECHANICAL SYSTEM 

The dynamic equation of motion is obtained by FEM analysis in the linear piezo-elasticity domain. 

First, the partial differential equation of motion in spatial- and the time-domain is transformed to 

system of ODEs by using the orthogonality for a single mode-shape. It is proven that for the system 

under study, the dominant mode of the vibration is the first mode-shape [21, 22].  The detailed pro-

cedure of extracting the dynamics of the coupled electro-mechanical system including the piezo-ac-

tuators is explained in [23]. Final representation of the system in the state-space form of Eq. (1) is 

obtained with the following system matrices 

𝐴 = [
0 Λ

−Λ 2ΥΛ
] , 𝐵 = [

0
𝐵𝑚

] , 𝐻 = [
𝐻𝑚𝑞

𝐻𝑚𝑣
] , 𝐶 = [𝐶𝑚𝑞 𝐶𝑚𝑣], 𝐷 = 0, (16) 

where Λ = diag(𝜔𝑖), and Υ = diag(𝜉𝑖), 𝑖 = 1,… , 𝑛 with 𝜔𝑖  and 𝜉𝑖  being the natural frequency and 

the structural damping ratio of 𝑖-th mode-shape and 𝐵𝑚, 𝐻𝑚𝑞 , 𝐻𝑚𝑣, 𝐶𝑚𝑞 , and 𝐶𝑚𝑣 representing the 

modal realization of the electro-mechanical effect of the piezo-patches, external disturbance, dis-

placement, and the velocity measurement of the system after applying the orthogonality of mode-

shapes [24]. 

5. Simulation and experimental evaluation 

In this section, the implementation of the proposed controller in Eq. (4) on the smart cantilever 

beam in Eq. (16) is studied. It is assumed that the system matrix 𝐴 has 10 % structured uncertainty 

in its elements in the control design procedure. Since the verification of the controller is performed 

on the experimental continuous system, the nonlinear terms or un-modelled dynamics 𝑓 will be the 

higher order mode-shapes which are considered as norm-bounded terms in the designing process. The 

closed-loop system is implemented on the real-time data acquisition platform of the dSPACE with a 

sampling rate of 10 kHz. The predefined task of the controller is to guarantee the robust stability and 

performance in conjugation with real-time vibration amplitude suppression in frequency ranges close 
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to resonance eigenvalues. Therefore, studies are carried out in the time-domain using the experimental 

rig shown in Fig. 3. Comparison of the response of the closed-loop system with the proposed control-

ler and the response of the open loop system under a harmonic excitation with the frequency close to 

the first natural frequency (14 Hz) is shown in Fig. 4.  

 

Figure 3: Experimental setup for verifying the per-

formance of the controller. 

 

Figure 4: Measured velocity output before and after 

activation of the control system. 

In this figure, the feedback channel is activated after 2.24 seconds, in order to give distinguishable 

results from the performance of the closed-loop system. Fig. 4 shows that the performance of the 

controller in suppressing the vibration is acceptable in the presence of the modelling uncertainties. 

Fig. 5 shows the control effort that is acting on the two piezo-actuators of the smart beam. The max-

imal applied voltage is limited to 100 Volts, and any higher voltage is saturated. Also, the estimated 

error of the observer is depicted in Fig. 6. In Figs. (4-6), as expected the vibration continues to exist, 

since the disturbance continues to excite the system throughout the entire duration of the experiment.  

 

Figure 5: Control effort acting on each of the pi-

ezo-actuator patches. 

 

Figure 6: Estimation error of the non-fragile ob-

server. 

Finally, to evaluate the robustness of the system to the higher unmodelled dynamics, the structure is 

excited by a sine signal with the frequency 77 Hz which covers the second mode-shape of the system. 

Fig. 7 shows the robust performance of the control system under consideration of the uncertainty 

modeling and excitation of unmodelled dynamics in the presence of the external disturbances.  

In addition Figs. (8) and (9) are representing the control input and the estimation error, respectively. 
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Figure 7: Measured velocity under the excitation of unmodelled dynamics. 

 

Figure 8: Control effort acting on each of the piezo-

actuator patches. 

 

Figure 9: Estimation error of the non-fragile ob-

server. 

6. Conclusion 

In this paper, the non-fragile observer-based control problem of uncertain reduced-order linear 

system is studied in an LMI/ME framework. The direct Lyapunov theorem is employed for coupled 

observer/controller stability analysis and synthesis. The controller is implemented on a real full-order 

mechanical vibrating system in the presence of the undesired external excitation. The robust perfor-

mance of the closed-loop system in real-time is investigated experimentally. 
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