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Disk unbalance in rotating shaft of machines is a common problem. Direct measurement of un-
balance forces due to disk unbalance is not possible, therefore, usually the unbalance forces are
predicted via response measurements. In the present work, a model-based approach with joint
input-state (JIS) estimation technique to detect the amount of unbalance present in a disc is pro-
posed. The JIS technique is of a deterministic-stochastic type, therefore, capable of estimating
the unbalance forces in noisy measurements. A numerical case study is presented for a single
disk rotor system. The state-space form of a modally reduced order model for the rotor-bearing
system and a limited set of response measurements are used. Mode shapes are obtained from a
finite element analysis of the rotor-bearing system. Results are presented for different levels of
measurement errors, and the effect of different vibration measurements (displacements and ac-
celerations) are shown. The efficacy of the proposed method is validated for different unbalance
conditions and rotor speeds.
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1. Introduction

Rotating machines typically consist of a rotor-disk-bearing and often subjected to periodic forces
e.g. force due to unbalance [1, 2]. Fault identification in rotating machines via signal processing
techniques are widely used in practice for qualitative analysis. For quantitative analysis, model-
based approaches are an active area of research. Meanwhile, these approaches are combined with
mathematical models for optimal estimates of system states from noisy measurements.

Optimal state estimation is one of the state-of-the-art methods for fault identification under model-
based approach. Kalman filter and its variants for linear and nonlinear systems are applied to rotordy-
namics for various purposes e.g. crack detection [3], parameter identification [4], fault identification
[5], etc. These techniques are capable of dealing with the presence of noise in the measured signal as
well as the presence of exogenous disturbances.

Finite element methods (FEM) are widely used for modeling and analyzing structural systems.
Dynamic FE models of complex systems have high dimensionality and may not be efficient and
accurate, therefore, reduced order models are needed for efficient performance. Qu [6] has discussed
different model order reduction techniques used in finite element analysis. In the proposed technique
the finite element method is used to model the rotor system.

Forward analysis in structural dynamics is well developed and easy to perform, where system
models and forcing functions are known. However, when the forcing functions are not known, then in-
put estimation techniques need to be adopted using the responses. A joint-input estimation technique
is developed for simultaneous estimation of input and state of the system [7], it uses a state-space
representation of the system. Later, this technique is applied in structural dynamics for force and
response estimation [8]. The JIS technique has been successfully applied for damage prediction in a
metallic body via limited response measurements [9]. Using reduced number of measured responses
in JIS technique modal displacements are estimated to calculate strain time history.
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In the present work, a modally reduced order model is used in the algorithm. A joint input-
estimation technique is used to estimate unbalance forces using a reduced order model and noisy
response measurements. Different set of measurements are used that consists of accelerations, dis-
placements, and strains. The responses are measured from a full order finite element model. Section
2 consist of the formulations for the system model and JIS technique. A numerical case study is pre-
sented in section 3 for a single disk rotor system to demonstrate the efficacy of the proposed technique.
Effects of the different noise levels are also presented with normalized mean square error (NMSE)
between exact and estimated forces.

2. Formulation

2.1 State-space description

In structural dynamics, finite element models are widely used. A vibrating structure modeled as a
linear dynamic system is described by:

[M ]{ẍ}+ [Cd]{ẋ}+ [K]{x} = Spp(t) (1)

where [M ], [Cd], and [K] are mass, damping, and stiffness matrices, respectively. p(t) is the force
vector, Sp is a force selection matrix relating the forces with the corresponding degrees of freedom
of the structure, x ∈ Rn is a vector of nodal displacement and the dot over the vector represents
differentiation with respect to time.

The proposed algorithm requires a modal domain representation of the system. Using the coordi-
nate transformation x(t) = Φη(t) , where the matrix Φ contains the eigenvectors in each column, η
represent the modal coordinates, and premultiplying the equation of motion (Eq. (1)) by ΦT (trans-
pose of Φ), we obtain the following set of equations:

ΦT [M ]Φ{η̈}+ ΦT [Cd]Φ{η̇}+ ΦT [K]Φ{η} = ΦTSpp(t) (2)

Using mass-normalized eigenvectors Φ and assuming proportional damping, the mass, stiffness
and damping matrices can be diagonalized. In turn, the following expression holds,

ΦT [M ]Φ = I , ΦT [K]Φ = Ω2, and ΦTCdΦ = Γ = diag{2ξjωj}.

where I is a n× n unit matrix, Ω = diag{ωj}, ξj and ωj represents jth modal damping ratio and
natural frequency, respectively. In modal coordinates, the equation of motion becomes

{η̈}+ Γ{η̇}+ Ω2{η} = ΦTSpp(t) (3)

The equation of motion in continuous time state-space form is represented by,

ẋ(t) = Acx(t) +Bcp(t) (4)
y(t) = Gcx(t) + Jcp(t) (5)

By using the modal reduction technique, higher order systems can be reduced to lower order sys-
tems, which decreases the computational efforts. The model order reduction of large structures is
necessary because the number of response measurements is less compared to its size. For this case,
the number of columns of the modal matrix will be reduced to the selected number of modes.
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x(t) =

{
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η̇

}
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[
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]
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0

ΦT
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]
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]
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{
[SaΦrΦ

T
r Sp], if the output is acceleration

0, otherwise

Vector x(t) contains modal states of the reduced order model and matrix Φr contains modal vectors
corresponding to the selected modes of vibration.

The measurements are observed at discrete time steps, hence, the continuous time state-space
model need to be converted into a discrete model. For a sampling time of ∆t, a discrete time state-
space model is expressed by

xk+1 = Axk +Bpk (6)
yk = Gxk + Jpk (7)

2.2 Joint input-state estimation

The purpose of the joint input-state estimation is to identify the unknown inputs along with the
state estimate. The joint estimator used in the present research is based on the linear minimum-
variance unbiased estimation, a recursive filter, which is derived by Gillijns and De Moor [7]. The
unknown input is estimated from the predicted states and the current measurement. In this algorithm,
it is assumed that the unknown input can be a signal of any type without any prior information.

For a linear discrete-time system represented by following set of equations,

xk+1 = Axk +Bpk + wk (8)
yk = Gxk + Jpk + vk (9)

An initial unbiased estimate and its covariance are assumed known. Three step filter equations are
summarized as:

Initialization

x̂0 = E[x0] (10)

P x
0 = E[(x0 − x̂0)

T ] (11)

Estimation of unknown input

R̃k = GP x
k/k−1G

T +R (12)

Mk = (JT R̃k
−1
J)−1JT R̃k

−1
(13)

p̂k = Mk(yk −Gx̂k/k−1) (14)

P p
k = (JT R̃k

−1
J)−1 (15)

Measurement Update

Kk = P x
k/k−1G

T R̃k
−1

(16)

x̂k/k = x̂k/k−1 +Kk(yk −Gx̂k/k−1 − Jp̂k) (17)

P x
k/k = P x

k/k−1 −Kk(R̃k − JP p
k J

T )KT
k (18)

P xp
k = (P px

k )T = −KkJP
p
k (19)

Time Update

x̂k+1/k = Ax̂k/k +Bp̂k (20)

P x
k+1/k =

[
A B

] [P x
k/k P xp

k

P px
k P p

k

] [
AT

B

]
+Q (21)
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where x̂k/k is the state estimate, p̂k is the force estimate, P p
k is the error covariance matrix for in-

put estimate, P x
k/k is the error covariance matrix for state estimate, and the matrix P xp

k is the error
cross-covariance (between input and state estimates) matrix. Kk is the gain matrix, R and Q are the
measurement and process noise covariance matrices, respectively.

For the case when number of measurements (nd) and number of applied forces (np) exceeds the
number of modes (nm), the matrices R̃k, JT R̃k

−1
J and JP p

k J
T becomes rank deficient which leads

to instability. Therefore, the bases of these matrices need to be reduced [8].

3. Numerical Example

In this section, a numerical case study is presented for the verification of the proposed strain
estimation technique. The rotor-disk-bearing assembly1 is shown in the Fig. 1 whose geometrical
dimensions and mechanical properties are presented in Table 1. A cartesian coordinate is attached
to the rotor at left bearing, y and z axes are shown and the direction of positive x axis (not shown)
is normal and outward to y-z plane. In finite element modeling the rotor system is discretized into
six beam elements. The ratio of shaft diameter/length is ≈ 22.8 hence modeled with Euler-Bernoulli
beam elements with uniform cross-section, dimensions and same elastic properties.

Nodes 

Shaft 

Disk 

y 

z 

Figure 1: Schematic diagram of single disc rotor system.

Table 1: Rotor-disk-bearing data.

Shaft : Length – 362 mm, Diameter – 15.875 mm
Modulus of elasticity – 2.08× 1011 N/m2

Disk : Mass – 782 g, Thickness – 15.875 mm, Diameter – 152.4 mm
Bearing : Stiffness – 2.57× 107 N/m, Damping – 250 Ns/m

In the present work, the disk unbalance is considered as an excitation to the shaft rotating with a
constant speed (ωshaft) as represented in Fig. 2. The rotor bow can be neglected because of the thin
disk. The unbalance force can be given as,

Funb = meω2
shaft (22)

The unbalance mass m is located at the radial distance e, and ωshaft is the rotating speed of the shaft.

3.1 Unbalance detection

First, the responses are generated from the full order model of the system and contaminated with
white noise. To simulate the measurement error, we have added random noise which can be expressed
as, noise = γσrk, where γ is the noise level (%), σ is the standard deviation of the response signal and

1The rotor system layout is chosen to match the machinery fault simulator (MFS) facility available at Acoustics and
Condition Monitoring Laboratory, Indian Institute of Technology Kharagpur, India.
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Figure 2: Static disk unbalance.

rk is the random sequences. Then, these noisy responses are used to estimate forces with a reduced
order model. The first natural frequency of the system is ≈ 124Hz, and unbalance force excites the
bending mode of vibration. Hence, first two orthogonal bending modes are selected in the reduced
order model. The natural frequencies, mode shapes, and damping ratios are calculated from the same
model used in the response generation. Hence, the modeling error is not considered in the present
analysis. Only the effect of measurement noise is observed.

Three different measurement sets are used in the present study. In set 1 the accelerations in x and
y direction at disk location are used, set 2 consists of displacements along-with accelerations. In set 3,
the accelerations at node 4 and normal strains on shaft at node 3 in x-z and y-z plane are considered.
It is noted here that, two components of the unbalance force are to be estimated by JIS technique,
therefore, two accelerations are necessary [10].
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Figure 3: Exact and estimated unbalance force
for rotor speed 1200 rpm.
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Figure 4: Exact and estimated unbalance force
for rotor speed 1800 rpm.

The detection of amount of unbalance (me) depends on the estimated forces. The exact and
estimated forces (obtained from different set of measurements) are shown in Figs. 3 and 4. The modal
states obtained using the algorithm are affected with low frequency drift, therefore, a Butterworth
high-pass filter with 5 Hz cut-off frequency is used to remove unwanted trends.

The spectrum of the exact and estimated force for 1200 rpm and 1800 rpm are shown in Figs.
5 and 6, respectively. The amount of unbalance (me) can be obtained by dividing the amplitude of
estimated force by ω2

shaft. The calculated amount of unbalances for both cases are 4.256× 10−4kg-m
and 4.23 × 10−4kg-m with 1.3% and 0.7% error when compared with exact amount of unbalance
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Figure 5: Frequency domain representation of
exact and estimated unbalance force for rotor
speed 1200 rpm.
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Figure 6: Frequency domain representation of
exact and estimated unbalance force for rotor
speed 1800 rpm.

(4.2× 10−4kg-m).
To observe the effects of measurement noise on estimated forces, three levels of noise (5%, 10%,

and 20%) are considered. The error estimates are presented in Table 2 for two different running speed.
The normalized mean square errors between exact and estimated unbalance forces are evaluated,
which is given by,

NMSE(%) =

√∑N
i=1 [Fexact(i)− Festimated(i)]2√∑N

i=1 [Fexact(i)]2
× 100 (23)

where Fexact is the exact force, Festimated is the estimated force, and N is the number of time-steps.

Table 2: Normalised mean square error (NMSE).

Measurement Rotor speed (RPM) Measurement NMSE (%)
set noise (%)

5 6.48
1200 10 7.0

20 8.13

Set 1 5 4.91
1800 10 7.26

20 12.46
5 3.4

1200 10 6.81
20 8.78

Set 3 5 2.77
1800 10 6.55

20 11.83
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4. Conclusions

In this paper, a technique to quantify the amount of unbalance present in the rotor system is
presented. The joint-input state estimation technique is used to estimate unbalance forces using a
reduced order model and with noisy measurements. The numerical example verifies the efficacy of
the present technique which is tested for different shaft speed and levels of measurement noise. The
force estimates are followed by calculation of the amount of unbalance for known running speed. The
algorithm provides better estimates when displacements/strains are included in the measurement set.
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