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A homogeneous semi-infinite flyer impacts a finite layered Goupillaud-type medium at-
tached to a homogeneous half space. After the initial impact in the direction perpendicular 
to the layers, the stress wave propagates through the medium. The Goupillaud-type finite 
layered medium allows for the stress to be modeled discretely through a linear dynamical 
system. Here we analyze the short and long term behavior of stress by means of the coef-
ficient matrix of the system and its eigenvalues. 
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1. Introduction 
Here we study a one-dimensional normal impact problem, where an infinite linear elastic homo-geneous flyer collides/welds with a stationary Goupillaud-type elastic layered target, attached to a halfspace, see Fig. 1.   

  Figure 1: Semi-Infinite Flyer Impacting a Layered Target on Halfspace.  The target has a finite length L and is initially at rest. As shown in Fig. 2 and [1-4], after the initial impact, the stress waves meet and split at the same time at each layer interface, since the Goupillaud-type layered medium of the target provides equal wave travel time for each layer. Distinct stress sequences denoted by ሼ ௜ܵ(݇)ሽ௞ୀଵஶ  , ݅ = 0,1, … ݉, develop over time. This results in a discrete model and a linear system of coupled recursive relations with constant coefficients given below:                                                             
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  Here ݇ = 0,1,2,3,  ௞ሼ0ሽ represents the discrete version of the Dirac measure, while the impedanceߜ ,…
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ratios of two consecutive layers are represented by ߙ௜ = ݅ ,௜ାଵݖ/௜ݖ = 0,1,2, … , ݉. The boundary con-dition at the impact face x=0 is taken from [5], while the continuity conditions of stress and displace-ment apply across each layer interface. It was concluded in [3, 4] that over time all the stress se-quences approach the same value, (steady-state solution) ݈௦. This limit stress value does not depend on the properties of the finite layered target as shown below:    
         ݈௦ = ௩బ௭బ௭೘శభ

௭బା௭೘శభ .                                                              (2)
       Here ݒ଴  and ݖ଴ are the velocity and impedance of the flyer, while ݖ௠ାଵ is the impedance of the halfspace.  

 Figure 2: Discrete Model. Lagrangian Diagram. 
 
The main purpose of this work is to gain new insight and independently prove the results from [4], 

by taking an alternative approach and treating the coupled linear system of the stress terms in Eq. (1), 
as a linear dynamical system, evaluating and analyzing the coefficient matrix and its eigenvalues. 
2. General solution of our discrete dynamical system 

The system of the recursive relations for the stress terms developed in [4] and Fig.2, can be written 
as: 

                                                             Ԧܵ(݇ + 1) = ௠ܣ Ԧܵ(݇),                                                       (3) 
 
Here Ԧܵ(݇) = ሾݏ଴(݇), ,(݇)ଵݏ … , (݇)௜ݏ … ௠(݇)ሿ்ݏ , ݇ = 0,1,2,3, ݉)  ௠ is theܣ , … + 1) ×(݉ + 1)  co-
efficient matrix, and ݉ represents the number of layers of the target. The description of ܣ௠ for the 
three-layer case (݉ = 3) is given below: 
   

ଷܣ             = ൦
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൪            (4) 

 
Equation (4) can be generalized for any number of layers m. 
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The entries of the coefficients matrix are given in terms of the layer impedance ratios: 
 

௜ߤ = ଶ
ଵାఈ೔,  ߪ௜ = ଵିఈ೔

ଵାఈ೔   for ݅ = 0,1,2, … , ݉.                (5) 
 
The general solution for our discrete dynamical system in Eqs. (3) - (5) is: 
 
                                     Ԧܵ(݇) = Ԧ଴ݒ଴௞ߣ଴ܥ + Ԧଵݒଵ௞ߣଵܥ + ⋯ + ௠௞ߣ௠ܥ ݇  .Ԧ௠ݒ = 1,2,3, …                         (6) 
 
Here ݒԦ௜ is the eigenvector of the single eigenvalue ߣ௜, while ܥ௜ is their corresponding constant, ݅ =0,1,2, … ݉. The eigenvalues of the ܣ௠ matrix are determined by solving the characteristic equation |ܣ௠ − |ܫߣ = 0. 
2.1 Expectations about the eigenvalues 

Based on [4] and Eq. (2), in order for all the stress terms to approach the same non-zero value ݈௦ as k approaches infinity, the following statements must be true. 
 

2.1.1 All the eigenvalues ߣ௜ of the coefficient matrix ܣ௠ except one, must satisfy |ߣ௜| < 1, 
for ݅ = 0,1,2, … , ݉.  
 
Verifying this statement for a large number of layers becomes computationally intensive. Here 

is a demonstration for the case of a one layer target (݉ = 1). The characteristic equation is  
 

௠ܣ| − |ܫߣ = ฬߪ଴ − ߣ ଴ߪଵߤ଴ߪ଴ߤ ଵߪ−଴ߙଵߤ଴ߤ − ฬߣ = ଶߣ− + ଴ߪ− ) − ଵߪ଴ߪ−ߣ(ଵߪ+଴ߙଵߤ଴ߤ = 
 

ߣ)=                                               − ߣ)(1 +  ଵ)=0                                                        (7)ߪ଴ߪ
 
Thus, the two eigenvalues are ߣ଴ = 1 and ߣଵ = |ଵߣ| ଵ, whereߪ଴ߪ− = |ଵߪ଴ߪ−| < 1 as ex-

pected, since |ߪ଴ߪଵ| = (ଵିఈబ)(ଵିఈ೔)
(ଵିఈబ)(ଵିఈభ)<1.  

   
2.1.2 There must be a single eigenvalue of unity, ߣ଴ = 1, with its corresponding (݉ + 1) × 1  eigenvector of ones ሾ1,1,1, … ,1ሿᵀ , for all ݉ ≥ 1.  

 
Indeed, it can be shown by inspection/induction that each row in the coefficient matrix ܣ௠ sums 

to one. After applying this fact, we replace each term of the first column of  ܣ௠ −  with the sum of ܫߣ
the terms in the respective row. Since this operation does not change the value of the determinant |ܣ௠ − after factoring the common factor (1 , |ܫߣ −  :the characteristic equation becomes , (ߣ

 

௠ܣ|                         − |ܫߣ = ተተ
(1 − (ߣ        (1 − (ߣ    …  ⋮   (1 − (ߣ         

ተተ = (1 − (ߣ ተተ
1      1         …  ⋮       1       

ተተ = 0.                          (8) 

 
Equation (8) shows that ߣ = 1 is an eigenvalue of ܣ௠ for any number of layers ݉ ≥ 1, as previ-

ously demonstrated in Eq. (7). Using similar argument, it can be shown by inspection that the eigen-
vector is a vector of ones.  
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2.1.3 When ܣ௠ is a Markov matrix, all the stress sequences converge to the same finite 
value.    

Based on the discussion in subsubsection 2.2.2, a coefficient matrix with positive entries is a Mar-
kov matrix, since the sum of each row of the matrix is already equal to one.  A Markov matrix satisfies 
statements 2.2.1 and 2.2.2. In addition, from Eqs. (2) and (6), one can also derive that ܥ଴ =  ݈௦. As a 
result, we conclude that all the stress sequences converge to the same value ݈௦. 

 
For instance, the medium consisting of a flyer, a three-layered target and halfspace with impedance 
ratios ߙ଴ = ଽ

ଵ଴ , ߙଵ = ଵ଺
ଵଽ ߙଶ = ଶ଼

ଷହ  ߙଷ = ଶ
ଷ  , from Eqs. (4) - (5), is characterized by the following sys-

tem coefficient matrix: 
 

ଷܣ                               = ൦
1/19       18/19

 2/35       1/35          0         0     32/35           0    
  4/63     2/63

24/315    12/315       1/63     56/63
    6/315 273/315

൪                                    (9) 

 
The system matrix ܣଷ in Eq. (9) is a Markov Matrix and has four eigenvalues, two of which are 
complex conjugate, as shown below: 
଴ߣ  = 1 

 
ଵ,ଶߣ                            ≈ 0.07932 ± 0.218444݅  with |ߣଵ,ଶ| ≈ 0.232399 < 1              (10) 

ଷߣ  ≈ −0.194897 
 
With the exception of the unity eigenvalue, the rest of the eigenvalues in Eq. (10) have a magnitude 
less than one, a fact that based on Eq. (6) guarantees the convergence of all the stress sequences to 
the same finite value. 
 
Further understanding of the convergence of the stress terms when the system matrix is not a Markov Matrix 
remains to be explored in the future. 
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