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1 INTRODUCTION

Aperture synthesis is an advanced signal processing technique that enables cutting-edge imaging per-
formance in sonar and radar systems, among various applications'. Synthetic aperture sonar (SAS)
systems rely on the motion of an active sonar, typically mounted on an autonomous underwater vehicle,
to synthesize an aperture that is much larger than the physical sonar antenna?. Coherent processing of
the backscattered echoes from successive acoustic pulses (pings) along the motion trajectory results in
underwater imaging and mapping with distinctively high resolution that is independent of range?.

Sufficient spatial sampling of the synthetic aperture is necessary to achieve SAS reconstruction free of
azimuthal ambiguities, which sets competing requirements on the physical size of the array, the imaging
range, the ping repetition frequency and the speed of the platform*. In particular, spatial aliasing artifacts
manifest in the reconstruction when the sampling distance d exceeds half the acoustic wavelength A
considering two-way propagation in active sensing®, d > )\/2. Even though spatial aliasing is mitigated
utilizing receiver arrays densely populated with spatially extended sensors, it can still induce distortions
in the reconstructed SAS image®”.

This study proposes a method to alleviate the impact of potential spatial aliasing by interpolating be-
tween recordings of backscattered echoes. The proposed method is based on a physics-informed neural
network (PINN), which learns a continuous representation of the underlying sound field from existing
datapoints and wave propagation models. PINNs have emerged as the interface between machine learn-
ing (ML) methods and physics-based models. Specifically, PINNs are trained by fitting a relatively small
amount of data combined with informative prior information in the form of physical laws from domain
knowledge, resulting in robust generalization performance from limited data and incomplete models®.
Notably, a PINN can be interpreted as an implicit neural representation of a function defined on a con-
tinuous domain. The representation is learned by optimizing the parameters of a deep neural network
based on a few discrete observations and model-based constraints. The inductive bias introduced by
the physics-informed constraints results in implicit neural representations that provide physically consis-
tent predictions at any point in the continuous domain from noisy or missing data, e.g., interpolation®.
Combining the versatility of neural networks as universal function approximators and smooth, periodic
functions as non-linear activations'®, PINNs have the capacity to represent physical models, such as
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partial differential equations (PDE).

Recently, implicit neural representations have been proposed for volumetric scattering field reconstruction
in forward-looking sonar'" and SAS imaging 2. In these studies, a neural network is trained to infer the
scatterers’ distribution as a continuous function of spatial coordinates. The training involves formulating
the backprojection processing step as an optimization problem. Specifically, the optimization objective in-
volves finding the scatterers’ distribution that, when forward propagated through a physical model, best fits
the recorded data under some constraints such as scatterer sparsity and surface continuity. However, the
neural backprojection is practically applicable for small-scale imagery and depends on the compromise
between accuracy and efficient computational implementation of the forward propagation model'2. An-
other group of studies has used PINNs for sound field reconstruction from a limited number of recordings
of the room impulse response collected from linear'® and planar microphone arrays'*. In this context,
a neural network implicitly represents the sound field as a continuous function of spatiotemporal coor-
dinates and is trained based on limited data and the acoustic wave equation. Herein, we adapt such
a neural sound field reconstruction method for interpolating the along-track matched-filtered recordings
from a SAS system. Training the neural network with physics-informed constraints, results in SAS imaging
free from spatial aliasing artifacts.

2 SYNTHETIC APERTURE SONAR IMAGING

Synthetic aperture sonar (SAS) combines coherently the backscattered echoes recorded with an active
sonar, while it moves along a predefined trajectory 3. Commonly, the synthetic aperture is formed along a
linear trajectory and the antenna is focused towards broadside, i.e., in strip-map mode®.

The active sonar transmits a short broadband pulse ¢(t),¢ € [0, 7,] of duration 7,, referred to as a ping,
and records the backscattered echoes repeatedly as the platform moves along the track. Monostatic
transmission and reception is assumed with the phase center approximation (PCA)'®, which replaces
each transmitter-receiver pair with a virtual transceiver located at the middle of the distance between
them. The backscattered wave from a scatterer located at r; is a replica of the transmitted pulse delayed
by the travel time for the two-way distance between the virtual transceiver and the scatterer, multiplied by
its scattering strength s(r;). Hence, the sound pressure prec(z, t) recorded at a receiver located at the
along-track coordinate « is the superposition of the backscattered echoes from all the scatterers within

the insonified volume V,
2|z —ry
Prec(@,t) = / q <t - ||1:2) s(rs)drs. (1)
i C

For simplicity, amplitude scaling factors due to the shading function of the transceiver and the spherical
spreading are incorporated to the scattering strength. To improve the range resolution, the recorded
signal (1) is pulse-compressed with matched filtering by convolving the recording with a time-reversed
replica of the transmitted pulse,

ety =0 [o(e- 220 ) e - [ (- 200 pan, @

where g(t) = q(—t) * q(t) denotes the cross-correlated pulse.

The sound pressure (2) in water satisfies the acoustic wave equation'® which is described by the inho-
mogeneous PDE,
1 9%
2 _
p—gﬁ——g@at)a 3)
where g(r,t) describes an arbitrary spatiotemporal distribution of scattering sources.
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3 PHYSICS-INFORMED NEURAL NETWORK MODEL

Consider the problem of determining a functional ® on the continuous spatiotemporal domain, = € RP,
t € R*, which satisfies a set of constraints that involve the evaluation of the function and its derivatives
on k discrete collocation points,

®: (z,t) > ®(z,t) subjectto Cy (®,V,®,V,® V2@, Vi®,...) =0. (4)

To solve this problem in the machine learning framework, the functional ® is implicitly represented by a
neural network Fy(z,t) with trainable parameters ¢, which maps the input spatiotemporal coordinates
(z,t) to the corresponding function value. After optimizing the network parameters ¢ on a training set
defined by the constraints C, at a discrete number of collocation points, the network can be used to
predict (interpolate) the value of the implicit function at any point within the continuous spatiotemporal
domain.

Such an implicit neural representation has the multi-layer perceptron (MLP) architecture shown in Fig. 1,

i.e., is a deep neural network with L fully connected layers. Each layer, ¢ € {1,---, L}, is described by
the d,-dimensional vector u, € R% such that,
Wy = oy (we (Wg-llg_1+bg)). (5)

Specifically, the vector u, results from an affine transformation of the input vector from the previous layer
u,_; defined by the weight matrix W, € R%*d-1 and the bias vector b, € R%, followed by the (non-
linear) activation function o,. The weight matrices and bias vectors for all layers constitute the trainable
parameters of the network, ¢ = {Wy, be}ZG{l’“_ L} whereas wy is a predefined parameter of the activation
function. The trainable parameters are initialized as random samples from a uniform distribution and
optimized progressively such that the network output best fits the set of constraints described by a loss
function L.

u; u;
N\ w, N\
(0.} o
N N2/
() ()

(b,
’ Hidden
layer layers layer

Figure 1: Schematic of a multi-layer perceptron architecture.

In particular, the parameters are updated with stochastic gradient descent over a number of iterations until
convergence, such that at the ith iteration ¢, = ¢;_1 — aV4L(¢), where « is the learning rate parameter.
Typically, the loss function that drives the optimization of the network parameters and, consequently, the
representation capacity of the network depends heavily on data. The distinctive characteristic of a PINN
formulation is that the loss function comprises additional constraints imposed by a physical model, such
that the space of possible solutions is restricted to fit both the available data and the underlying physics.

Herein, we propose a PINN model for aperture synthesis that aims to represent the matched-filtered
sound pressure at any point along the SAS trajectory by ensuring that it fits the data recorded from a few
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pings as expressed by the loss term,

N
Lona = 5 [P t0) = Falan, )2 ©®)

n=1

and that the representation complies with the partial differential equation (PDE), which models the wave
propagation, as expressed by the loss term,

1 M
Lppe = Mmzz:l

The optimal network parameters ¢* minimize the total loss on N collocation points for the data-fitting term
and on M collocation points for the PDE-fitting term,

( 0? 1 02 @

s~ gz ) Pttt

¢" = argmin ALgata + LpDE, (8)
¢

where )\ is a regularization parameter, which controls the relative importance between the correspond-
ing terms. Note that the gradients for the calculation of the PDE-loss term (7) are evaluated with the
automatic differentiation method'”, which is based on the chain rule to backpropagate gradients through
the network. We employ the sinusoidal representation network (SIREN) architecture ', which uses a
sinusoidal activation function. Such smooth and periodic non-linearities that are infinitely differentiable
result in smooth representations of complex signals and their spatial and temporal derivatives. The as-
sociated parameter w of the sinusoidal activation function controls the frequency mapping of the network
parameters '8 and facilitates training '°.

4 RESULTS

For this study, we have used a 5-layer perceptron architecture for the neural network with parameters as
listed in Table 1 implemented in Python with PyTorch'®. The Adam optimizer2® with a learning rate of
10~* is used for the network training. Backscattering from an air-filled spherical shell of 1 m diameter and
0.025 m thickess in free field, insonified with a linear frequency modulated pulse with a central frequency
of 20 kHz and 30 kHz bandwidth, is computed through the analytical solution?'. The backscattered signals
are recorded with a sampling frequency of 120 kHz and spatially sampled every 1 cm along a 6 m linear
trajectory. The resulting matched-filtered signals constitute the baseline dataset.

To demonstrate the effect of spatial aliasing, an undersampled dataset is obtained from the full base-
line dataset by retaining only the matched-filtered response at every 10 pings. Using the undersampled
dataset to evaluate the data-loss term in Eq. (6) and evaluating the PDE-loss term in Eq. (7) on the same
number of collocation points sampled uniformly at random within the spatiotemporal domain, we train the
PINN described in Table 1 over 10000 iterations. We have used a regularization parameter A = 1e3, to
prioritize the fidelity on the available data. Figure 2 shows the evolution of the data-loss (6), the PDE-
loss (7), as well as the total loss over the training iterations. The optimization converges, i.e., the rate of
change for the training loss becomes infinitesimal, roughly after 5000 iterations.

After training, the PINN can be used for predicting the matched-filtered backscattered soundfield at any
point within the continuous spatiotemporal domain. Hence, we use the trained PINN model to interpo-
late the soundfield over the missing recordings. The reconstructed backscattered soundfield is, then,
compared with the baseline dataset as well as a soundfield reconstruction obtained with cubic spline in-
terpolation. The results are shown in Fig. 3, where the along-track axis represents the spatial coordinate
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Table 1: Network parameters

Parameters ¢

’ Layer \ dim(us_y) | dim(uy) | dim(W,) | dim(by) \ o \ we ‘
Input 2 512 2 x 512 512 [sin| 3
Hidden 512 512 | 512x512| 512 |sin | 30
Hidden 512 512 | 512x512| 512 |sin | 30
Hidden 512 512 | 512x512| 512 |sin | 30
Output 512 1 512 x 1 1 T | 1

Total: 790017

Loss

-0.1 T T T T
0 2000 4000 6000 8000 10000

iteration

Figure 2: Loss terms towards convergence.

z and the range axis represents the temporal coordinate ¢ transformed into slant range y as y = ¢t/2 for
two-way propagation and sound speed c. A detailed view of the initial part of the trajectory indicates that
polynomial interpolation fails to capture accurately the wavefront curvature at larger incident angles. Note
that equidistant along-track spatial sampling of a linear trajectory results in a nonlinear incident angle
spacing, 6 = sin(arctan(x/yo)) where yq is the range at the closest point of approach. However, the PINN
prediction interpolates the wavefronts smoothly; see Fig. 3(f). Additionally, the accuracy of the recon-
struction is evaluated through the normalized mean square error (MSE) '3'4 between the actual p(z, t)
and the reconstructed soundfield j(x, t) in each case defined as,

E[(p(e,t) - plz.1)]
Elp(e, 07

The MSE for the reconstructed soundfield with spline interpolation is —10.23 dB, whereas with PINN
interpolation is —14.65 dB.

MSE = 10log;, 9)

The effect of spatial undersampling manifests as spatial aliasing in the reconstructed SAS images. Fig-
ure 4 shows the SAS images obtained by backprojecting the corresponding matched-filtered soundfields
in Fig. 3. Specifically, spatial aliasing artifacts are present in Fig. 4(b), which correspond to the SAS
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Figure 3: (a) Simulated matched-filtered backscattered signals from an air-filled spherical shell
in free field, spatially sampled every 1 cm along a 6 m linear trajectory. Reconstructed field with
(b) spline interpolation and (c) PINN. (d)-(f) Detailed view over the initial 0.5 m trajectory of the
corresponding reconstructed fields in (a)-(c).

image from the undersampled dataset. Interpolating the matched-filtered soundfield using the trained
PINN before backprojection eliminates the spatial aliasing as shown in Fig. 4(c), which is not the case
with spline interpolation, Fig. 4(d). Comparing Figs. 4(e)—(g) indicates that PINN interpolation reduces
significantly the absolute pixel-wise reconstruction error.

5 CONCLUSION

Inadequate spatial sampling in aperture synthesis induces aliasing artifacts in SAS imaging. This study
proposes a PINN as a spatiotemporal function approximator to reconstruct the backscattered soundfield
in the continuous spatiotemporal domain. Constraints based on wave propagation models supplement the
information content from limited data during training resulting in physically viable network generalization
performance. Simulation results show that PINNs can interpolate accurately the soundfield from sub-
Nyquist spatial samples of matched-filtered recordings, resulting in SAS images free of aliasing artifacts.
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Figure 4: SAS reconstruction with backprojection of the (a) baseline dataset, (b) undersampled
dataset, (c) interpolated dataset with PINN, (d) interpolated dataset with splines. Absolute error
between the baseline dataset and (e) the undersampled dataset, (f) the interpolated dataset with
PINN, (g) the interpolated dataset with splines
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