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1. INTRODUCTION

1.1 Basis and Scope

The results presented on this paper are based upon investigations carried out
by EASAMS into the use of Towed Seismic Arrays. Presentation of the results
concentrates on the qualitative aspects of using Neural Networks for Array
Position Processing.

This work has been carried out with the support of Procurement Executive,
Ministry of Defence.

1.2 Background

Interest in the use of large aperture sensors derives from the higher gains
and resolutions achievable with them. The use of towed arrays allows the
construction of aperture sizes that would otherwise be impossible. However,
the relative positions of the sensors must be known sufficiently accurately,
typically to within one fifth of the wavelength of the sensed energy, to
achieve a useful performance gain.

The typical sideways beam-forming scenario is shown in figure 1‘ Figure la
shows a variety of factors which can influence the shape of a Towed Seismic
Array in the lateral plane, which was the plane of interest for these
investigations. Figure 1b shows a typical beam pattern that might be
achieved in this situation if the senor locations were known precisely. This
quickly degrades even with small errors. Figure 1c shows the beam pattern ‘
that might actually be achieved if no Array Position Processing were used when
the array is disturbed.

 
Approaching the result shown in figure 1b requires knowledge of the Array
Sensor Positions to within a tiny fraction of one percent of the array length.
In addition, a variety of engineering constraints in the Seismic Array
application required that Array Position Processing must be based upon
indirect indications of position, generally heading sensor information. This
is the problem that has been investigated.
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1.3 Structure of Paper

In the section that follows the basic theory on which this investigation is
based is presented. Section 3 describes the qualitativa aspects of the

results obtained. Chapter 4 seeks to explain these results in terms of the
theory presented in section 2. Finally conclusions are drawn as to the
relative merits of the approaches considered.

2. BASIC NETWORK THEORY

2.1 Approaches Considered

The characteristics of three different approaches were compared. The three
approaches were:

- a linear Kalman Filter formulation. The basis of this approach is
well known (e.g. [2]) and is not described further.

- a Multi-Layer Back-Propagation Network ([3] and [4]).

- a so-called Pi-Sigma Network. Pi-Sigma is a general term coined to
cover the types of network described in [5] and [6], i.e. which share
the common features of having one layer ofweights and performing a
polynomial expansion of the input vector (see later).

Both the Neural Networks investigated were feed-forward networks (see fig.s 2a
and 2b) in which there is a uni-directional flow of information from input to
output as opposed to Recurrent Networks (see fig. 2c) which are characterised
by iteration in information flow.

Although different in formulation, the operation of both feed-forward networks
is the same in that they seek to approximate a non-linear function between
input and output. This is attempted by optimising the system of weights
contained in the network using an optimisation method, which in neural network
terms is called a learning or training rule.

It can be shown ([3], [4], [5) and [6]) that, provided there is a unique

mapping between input and output (i.e. a given input always gives the same
output), both these types of network can always approximate that function.

The precision of the approximation is correlated with the network size in both
cases (i.e. bigger networks are generally more precise).

2.2 MultijLayer Back-Propagation Networks

As can be seen in figure 2a, the network output is calculated as the sum of a
system ofnon-linear functions (in this case sigmoids) of the input.
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Optimisation of the weights using the Back Propagation training rule allows
the network to 'learn' a non-linear function between input and output. The
principal features of these networks are described in [3] and [4] but the most
noteworthy for the moment is that Back Propagation suffers from local optima
in the training process.

2.3 Pi-Sigma Networks

Pi-Sigma Networks have one layer of inputs (a (possibly incomplete)
polynomial expansion of the inputs of order N. i.e. multiplied together in
combinations of l to N), one output layer and one layer of weights connecting
every input to every output. 'Training' of such a network simply involves
optimisation of the weights to produce a (multi-dimensional) polynomial curve
fit to the non-linear input-output relationship. The main differentiations of
this approach from Back Propagation are that training can be effected by the
(simpler) Delta Rule and that the network is not subject to local optima [5].

3. REPORTING OF RESULTS

3.1 Basis of Investigations

Figure 3a shows a ’black box' view of the 3 approaches considered. The only
difference between Neural Network and Kalman Filter black boxes is that the
Neural Network generates an additional 'Novelty' output (which is not
subsequently used as an input). This output gives anindication of the
Network's 'familiarity’ with the current input conditions.

These ’black boxes' were testedusing a three dimensional hydrodynamic towed
array model. The training data for the neural networks were also obtained
from this model.

3.2 Qualitative Network Results

In figure 3b, the following qualitative characteristics of the Neural Network
performance can be seen:

- The absolute output error is below that required for beam-forming for
significant periods of time.

- The output error not obviously correlated with array shape.

- The output error is correlated with Novelty output which appears to
set an upper bound to the output error.

- The output error does not increase monotonically with time.
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3.3 Qualitative Comparison with Kalman Filter

In figure 3b, the following qualitative comparisons can be made between the
performance of the Kalman Filter and Neural Networks:

- Across a wide range of array shapes absolute error magnitude for the
Neural Network is generally smaller than for the Kalman Filter.
However, at or near the straight array condition there is no
significant difference.

- Kalman Filter performance deteriorates as network shape deviates from
assumptions for which it is optimised, i.e. for small deviations from
straight. Similarly, Neural Network performance sometimes
deteriorates when network shape deviates from the shapes on which it
was 'trained' (i.e. optimised),

3.4 Qualitative Comparison of Networks

Qualitatively the results for the two network types were very similar.
However, certain differences were observed both in 'training' and in
operation:

- Pi-Sigma trained significantly faster than Back Propagation Network.

- The performance obtained from the Back Propagation from training was
not consistent, different start conditions leading to different
results. Also during ’training' Back Propagation Network frequently
encountered plateaus in performance, at levels worse than those
eventually achieved, thereby prolonging training. These effects were
not observed withthe Pi-Sigma networks,

— In operation, Pi-Sigma networks tended to be more accurate than Back
Propagation networks (on average).

4. DISCUSSION OF RESULTS

4.1 Network Results

Neural Networks appear a practical possibility as accuracies achieved are
sufficient for beam-forming. The theoretical explanation for this result is
that the network has learnt a non-linear function which allows it to map
inputs to outputs in the way required to allow it to interpolate between and
extrapolate from the training data used to derive it.

The non-linear function that has been learnt is of comparable complexity to
the 'real-world' situation with no a priori knowledge of either the 'real
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world' or the simulation model. As such, these simulation results seem likely

to be more than usually relevant to the practical situation as it seems quite

possible that similar training might be similarly successful in the real world

case.

Correlation of Network error with the Novelty network output rather than array

shape appears to indicate that the limit of array shape that can be handled

will be a function of available ’training' data rather than array shape.

Information content of measurements used appears to be sufficient to prevent

'drift’ (i.e. errors building with time) as the Network error can be seen

(figure 3b) to decrease without position update information.

h.2 Comparison with Kalman Filter

The operation of Neural Networks appears analogous to that of the Kalman

Filter in that performance is best near the conditions at which they were

optimised. The principal differences appear to be:

- The neural network can be optimised for many sets conditions rather

than just one and can then interpolate and extrapolate from those

optimisation points.

- The neural network is a non-linear formulation derived from empirical

results without a priori knowledge of the system being estimated. In

contrast the Kalman Filter is based (in this case at least) on a

linear a priori model.

Additionally, the Novelty output from the Network is analogous to inspection

of Kalman Covariance terms for determining the level of confidence in system

output thatis appropriate.

4.3 Comparison between Networks

The differences observed between the two types of network seem explicable in

terms of:

- the different characteristics of network training error surface.

Back Propagation is well known for suffering from local optima in its

training, corresponding to the observed plateaus and occasional sub-

optimal performance. Pi-Sigma Networks do not suffer from this [5].

- the differences in topology. Pi-Sigma Networks are really a set of

networks mapping all the available inputs to each output

independently. It seems it may be this independence between outputs

which (in this application) allows it to out perform the Back

Propagation Network.
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5. CONCLUSIONS

The results of a simulation based investigation of Neural Networks as an Array
Position Processing technique are presented. It is felt that these results
are (if anything) more practically relevant than normal simulation studies as
the Neural Network approach affords no possibility of 'biasing’ the solution
to the characteristics of a simulation model.

Neural networks (of the types described in this paper) appear to offer a

capability analogous to that of the Kalman Filter in the Array Position
Processing application. Their operation appears to be based upon the
derivation of an optimal, non-linear process model from example system

responses. In operation, Neural Networks appear to be able to interpolate and

extrapolate from the example cases on which they arebased to give, in most

circumstances, better performance than the Kalman Filter.

The results obtained are broadly in keeping with those that would be expected
from the theoretical foundations of the approaches considered. It is felt
this indicates that Neural Networks may be considered in the mainstream of
signal processing rather than as an area of 'black magic'.
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Fig.1 ARRAY POSITION PROCESSING PROBLEM
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2: EXAMPLE RECURRENT NETWORK

Fig.2 EXAMPLE NETWORKS
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