
 

Proceedings of the Institute of Acoustics

A "TRUE” MAXIMUM LIKELH'IOOD METHOD FOR ESTIMATING

FREQUENCY WAVENUMBER SPECTRA

Arthur B. Baggeer

Massachusetts Institute of Technology, Cambridge, MA 'USA 02139

1. INTRODUCTION

Adaptive array processing is used in many fields where high spatial resolution and sidelobe con-
trol are needed. These include geophysical exploration, seismic arrays for earthquakes, physical
oceanography, sonars, radio astronomy, microwave radar for air trafiic control, and phased array
communication satellites. In all these fields the number of sensors in the arrays is increasing rapidly
as the instrumentation technology becomes less expensive and easier to implement‘ Arrays with
over 1000 sensors are now being deployed or considered for a number of advanced systems. In

addition, the array geometries are becoming more complicated because of structural constraints
and[or availability of sites, so irregular geometries with nonuniform interelement spacing must be
incorporated.

2. ADAPTIVE ARRAYS, SNAPSHOTS AND SAMPLE COVARLANCES

The array processing adapts to the signal environment by using “snapshots” of the ambient field
to characterize its spatial structure usually in terms of the N:N cross spectral covariance matrix,

5.3-”) of the N sensor signals. This estimate is the sample covariance matrix formed by
averaging the outer product of the L snapshots, 30(1),! = 1, L, or

L

$0) = %;X‘(/)x'(n" (1)
=1

where the superscript H denotes hermetian. When the snapshots are Gaussian random vectors,

the elements of the sample covariance matrix have a complex Wishart joint probability density of

dimension N and degrees of freedom L, which is a matrix generalization of thex2 density. [1]
In many applications the number of snapshots is often limited by the short term stationarity of

the ambient field relative to the requirements of the adaptive processing, For example, the signals

may be transient such as earthquake seismology or the result of an active signal such as in radar.
The statistical character of the sample covariance introduces several important issues relevant to

adaptive array processing when the number of sensors is large and the number of snapshots small.

a For an arbitrary sensor covariance matrix there are N(N + l)/2 separate elements to be
estimated with the only constraint that the matrix be positive semidefinite. The relationship
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among the elements can be further constrained if homogeneity is applied; however, this is not

easy to introduce.

o The rank of the sample covariance is min(L, N). Many adaptive array algorithm require the

inverse of the sample covariance matrix. When L < N the rank is not full and the matrix is

singular and not invertible. This has lead to adhac fixes such as diagonal loading (adding a

scaled identity matrix to the diagonal), eigenvalue thrhholding (performing a singular value

decomposition and putting a lower bound on the eigenvalues), or subspace decomposition

(using an SVD to transform to a subspace with finite eigenvalues). While all of these are

adhoc, they do work andare used extensively.

0 Even when L 2 N and the rank of the sample covariance is full, the number of snapshots re-

quired for accurate processing is large. For example, Brennan and Reed [3] demonstrated that

L > 3N was required to obtain reliable predictions of the receiver operating characteristics

(ROC’s) in the high performance regirne,r'.e. low false alarm, high detection probabilities.

0 Virtually all adaptive arrays areused with signals which propagate within some medium, yet

few if any of the adaptive array algorithms published to date take advantage of the physical

constaints which the propagation medium imposes upon the covariance matrix to reduce the

number of snapshots required for characterizing it. Within the set of positive semidefinite

matrices the subset which is “close” to a matrix satisfying a propagation constraint is much

more restricted (an example of such aconstraint might be restrictint is to be the transform

of a positive function over a support corresponding to propagating wavenumbers).

The essential points summarizing these items are that (1) the sample covariance often has insulti-
cient rank or accuracy for adaptive algorithms with a large number of sensors and (2) the physical

constraints imposed by the wave equation upon the covariance have not been exploited.

In mt applications where constraints have been imposed, they are in the form of a set of

discrete signals corresponding to a set of finite sources. This leads to a separable covariance matrix.

The literature on this problem is quite extensive, and each field has its own set algorithms for

approaching the problem of a finite number of directional signals against a background of spatially

white (uncorrelated among sensors) noise. Many recent techniques involve eigenvector methods

often in the context of MUSIC based approaches. Lg. [4], [5] In a large number of applications,

especially geophysical ones, the signals field is spatially continuous and not well modelled by a

discrete noise field. (Even discrete sources become continuous when the array apertures are large

and approaching the coherence limits introduced by scattering within the propagation medium.)

Imposing a priori physical constraints on the structure of the covariance matrix for the general

problem of discrete and continuous components has been attempted in a few limited cases for the

problem of directional wavenumber spectrum estimation of sea surfaces in physical oceanography-

[6]. In this work a norm on the error matrix of the sample covariance and the transformation of

an estimated wavenumber spectrum is minimized over the spectrum subject to constraints of the

wavenumber support and a priori information, mg. a bias for isotropicity. The minmization leads

to an iterative algorithm which is verified against simulated and field data. While the algorithm

worked, the number of snapshots needed for a specified confidence levsl was not discussed.
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3. A “TRUE” MAXIMUM LIKELIHOOD METHOD FOR ESTIMATING
FREQUENCY WAVENUMBER SPECTRA

The physical constraints ofthe propagation medium should reducethe number of anaphsots required
{or adaptive array processing since they provide a prion‘ restrictions. Most importantly, it very
desirable to be able to use adaptive procasing when the number of snapshots is less than the
number of sensors, which is often the situation with large arrays. Snyder and Miller [7] found this
to be the case {or stationary time series when they imposed a Toeplitz constraint in conjunction
with an EM (estimate-measure) approach to spectrum estimation. Similar concepts can be applied
to a variety of array processing problems if one imposes the constraints of the wave equation on
the structure of the sensor covariance matrix. For problem in a homogeneous medium this can be
done by requiring that the matrix have the form 1

Soil) = nuns..- + [m M(/,k)su.k)af(r.k)
where

o 17,.(1') is a "white noise" level associated with sensor noise and/or a sensitivity parameter;

0 P(f,k) is the directional wave spectrum of the ambient field;

0 D(/,lr) is the support of the wavenumber field at frequency f imposed by the wave equation;

0 E;(f,k) is the sensor response to a signal in the wave field at frequency f and wavenumber
k.

Note that the physical constraints are imposed directly in terms of both the allowable wavenumber
region and the sensor response; For example, (i) n(f,k) can be specified to include both propagating
(real wavenumber) and evanescent (complex wavenumber) waves, (ii) f,k) can accommodate
omnidirectional sensors as wall as sensors with directional sensitivity and vector sensors such as
three component accelerometers and polarized instruments, and (iii) multimode propagation can
be accommodated by specifying n(f,k) to include regions of k space corresponding to difi'erent
propagation modes.

This physical model can be used to formulate a "true" maximum likelihood estimate of the
directional wave spectrum, P(f,k) and the white noise level 0,1,. We assume that each “snapshot”
is a Gaussian random vector drawn from an ensemble with the above sensor covariance matrix.
The maximum likelihood estimate is given by

8,, max z—x'(n"s-*(nx'(n" 1
P(l.k).'.’. 1}, («SUW'

This can be manipulated to the form

Misfit/1i?“ leémsm) — Indetlsll

 

lThe important structure in the field is that it he represented as a superposition of uncorrelated sources. For'hoinogeneous fieldl, : wavenumber spectrum provides this. More generally, one can consider a superposition ofuncorrelated sources in a space whose propagation to the receivers are represented in terms of the Green's functionof the medium such as is done {or matched field processing. [8]
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This is essentially the same result given by Burg and Luenherger [9]; however, they did not impose

the propagation constraints. There are several important aspects of this maximum likelihood

formulation.

0 The sample covariance matrix, S(/), is not inverted, so one does not need to resort to the

Various aniline strategies to do so.

0 The function has a nonlinear dependence upon the arguments for the minimization, so a

closed form solution is not generally available.

0 While a closed form solution is not available, the first and second variations can be derived

using matrix calculus which suggests a numerical algorithm for the minimization.

o There are no constraints upon the array, so irregular geometries with nouniform interelement

spacings can be used.

The variations have a remarkably simple form which have a very intuitive interpretation. For the

first variation on P(k) one obtains 2

less. IW£u(k)x'l
Am = Pmtk) - 11P;3(k)51’(k)

where

- W....,(k) = S“E(k)/E(k)HS“E(k) is the minimum variance beamformer for a field at
wavenumber k with covariance S;

e Pm(k) = [E(k)”S-‘E(k)]" is the minimum variance output power (often referred to as the
maximum likelihood method (MLM), or Capon, estimate.[ll]

Since P(k) 2 0, the conditions for a stationary point must incorporate this constraint. This leads

to either A0!) or P(k) = O for all k. There is a similar expression for the variation with respect to

0:. The second variation can also be specified analytically so that one can use one of the several

methods for multiparameter optimization [IO] This was used to derive an update algorithm based

upon discretizing the wavenumber function and using Newton’s method for the iteration.

The intuitive interpretation of A(k) follows. W3” (k)X‘ represents the output of the minimum
variance filter at wavenumber it when snapshot X‘ is the input. As such it passes all components at

k and minimizes the all others. The sum is an average over all anaphsots. This average is compared

to what is predicted by the model power output Pm(k) in order to determine the direction of the

increase for 6P(lr). The stationarity condition is applying what one would intuitively expect of

an algorithm - making a heamformer measurement, comparing it to a model, adjusting the model,

recalculating the beamformer.
The approach derived has considerable similarity to that of Snyder and Miller [7] using an

estimate-measure formulation; however, there are several important differences: i) the formulation

is for spatial signals and in corporates all the constraints of the wave equation, ii) the role of the
white, or sensor, noise is included explicitly 5, iii) the iteration uses variational expressions so a

 

’The notation for the frequency dependence has been luppreued for simplicity.
SSpatial white noise Cannot he represented by establishing a floor in the wave number Ipectrum rince it! Iupport

ll usually finite in the k domain '
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number of update algorithms can be employed.

4. AN EXAMPLE

An algorithm implementing the “true' maximum likelihood formulation was implemented on a
PC (IBM-AT class machine) to examine its convergence properties and compare it to existing
algorithm. A field consisting of sensor noise, 3D isotropic (black body) noise‘ and three directional
signals was synthesized. A receiving array consisting ofa 30 element, circular array with 3/2A radius
was used. An algorithm based upon Newton’s method was implemented to iterate to a stationary
point for the ‘true" maximum likelith estimate. Figures 1 and 2 show the directional spectrum
estimates generated using the minimum variance, or Capon, estimator, and the proposed algorithm,
respectively. 5 There are several improvements in the estimate of the directional spectrum using
the new algorithm.

s It detects one of the directional signals whereas the minimum variance estimate does not.

0 3D isotropic noise measured on a 2D surface of the circular array has lrequency wavenumberfunction given by c/[l — (IklA/2x)’]'/’ which should diverge at lk] = Zn/A. The minimum
variance algorithm does not indicate even a ridge for this divergence whereas the new algo-
rithm has a ring in this region suggesting the spectral peak.

a The maximum likelihood algorithm decays much more rapidly to zero in the region outside the
propagating region, it. [kl > ZI/A which is the correct value for the wavenumber function
in this region.

While the algorithm has been tested on a very limited number of cases, the work to date suggests
that it does converge and give superior estimates for a finite number of snapshots and irregular
array geometries.

5. SUMMARY

The “true” maximum likelihood method incorporates a finite number of snaphots, arbitrary array
geometries and a prion‘ physical constraints so it provides a consistent framework for estimating
frequency wavenumber spectra. it is an implicit method since it estabishes a set of equations for the
maximum as well as the local gradient about it. These conditions have intuitive interpretations in
terms of the minimum variance fromula; however, they cannot be solved for explicitly nor can the
global optimality he established. Nevertheless, an algorithm has been devised which apprears to
converge relatively quickly and has modest computational requirements. Moreover, the resolution
is superior to the minimum variance algorithm, the only method now capable of dealing with arrays
of arbitrary geometries. There is the attractive possibility of using the minimum variance estimate
to initialize the maximum likelihood algorithm.

While some preliminary analysis and implementation has been done on the 1‘true” maximum
likelihood algorithm, there are several important issues which remain for future investigation.

‘Blaelr body noise has a spatial covariance SUI) = sinc(21r[h|/A). it is not spatially white.
:The wavenuniber spectra are plotted v: kA/Zw, or normalized slowness. All propagating signals are thereforewithin the unit circle.
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Figure 2: Directional Spectrum Estimate Generated with Proposed Algorithm (after 6 iterations)
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0 The number of snapshots, L, required for a given array dimension, N, needs to be examined

for the situation when L S N, is. the rank dificient case which often exists for large arrays.
It is clear from empirical experience that arrays can work in this regime using adhnc methods

to fill out or constrain the rank of the sample covariance, but there is no appropriate theory
for this.

s A numerical implementation of the proposed algorithm requires that the wavenumber func-

tion, P(f,k) he diecretized. In principle this discretization can be arbitrarily fine which
implies a very large number of degrees of freedom. In the preliminary analysis already done,
the response remains stable in regions where the wavenumher function is smooth, but tends

to become superdirective about directional signals. We have attempted to mitigate this by
regularizing, or smoothing, the wavenumber response since the directional signals are impul-
sive in wavenumber space. Snyder has suggested that this is necessary in the EM approach

I to spectrum estimation [12]. The discretization methodology versus thenatural resolution of
the array, the regularization, and the number of snapshots all need to resolved.

0 There are a number of applications involving transient data where “short term" directional
spectra are desired. For example, Capon’s original paper was concerned with earthquake data

which are transient. This is often called velocity analysis in the geophysical literature.[13[,

[14], [15],[16[ In these applications the wavenumber support can often be limited by a prian‘
information. The proposed algorithm can incorporate this whereas others cannot. The appli-
cation to transient data and short term directional spectra is an important application which
needs to be explored.

- The proposed algorithm can be extended to inhomogeneous field applications. These are

commonly called matched field methods and have evolved from sonar and geophysics, but are

now finding application in a number of other areas where the inhomogeneity of the field is
- an important constraint. The extension of the analyses to inhomogeneous field applications

is one of the important research topics.
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