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1. INTRODUCTION

Ultrasound was first used diagnostically in medicine in the mid 19605. Today it is used extensively in a
wide variety of medical applications ranging from diagnostic imaging (including Doppler) to therapy such
as hyperthermia and Iithotripsy (stone breaking). Diagnostic imaging systems typically operate in a
pulse-echo mode with a centre frequency (to) in the range 1 to 10 MHz. Almost all diagnostic systems
employ some form of focusing, either in the form of a lens or electronic beam forming and often both.
Duck et al [1] presented a variety of data in a survey of diagnostic systems indicating that peak positive
pressures (P+) for such systems were in the range 0.75 to 8.8 MPa and peak negative pressures (P-)
were in the range 0.10 to 3.90 MPa. In a recent paper [2] that examined trends in acoustic output it was
noted that there had been a steady increase in the output of diagnostic equipment over the last 20 years.
A survey of Iithotripsy systems [3] showed that typically these have centre frequencies in the range from
150 kHz to over 850 kHz with peak positive pressures in the range 9 to 105 MPa and peak negative
pressures between 2.8 to 9.9 MPa. These combinations of high acoustic pressures, high frequencies and
the use of focusing mean that all medical ultrasound systems (therapeutic and diagnostic) operate in
regimes where nonlinear effects are very significant but it is only relatively recently that this has been
recognized.

In the early days of medical ultrasound scanners it was generally assumed that they behaved as linear
systems. It was about 1980 when the experience of nonlinearity in other branches of acoustics started to
be applied to medical ultrasound. In particular Muir and Carstensen [4] highlighted some of the nonlinear
effects that were of potential interest in medical ultrasound. A companion paper [5] presented
experimental measurements which were aimed. at least partially. at convincing those sceptics in
biomedical research that nonlinear effects really did occur in medical ultrasound. It is noticeable that the
measurements presented were in terms of intensity and fundamental amplitude; no time waveforms were
produced. The authors noted that a hydrophone with a flat frequency response had been reported in the
literature but that they were "difficult to construct and not commercially available". In the absence of such
hydrophones Carstensen et al [5] were unable to produce any hard evidence for nonlinear distortion in
diagnostic ultrasound but concluded that "harmonic distonion and formation of shock waves may occur in
many of the highly focused ultrasonic beams used in these devices".
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Fig. 1: Typical ultrasonic pulses from a medical ultrasound system; (a) low drive level (b) high drive level
(+20 dB)
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it was only in the early 19805 when polyvinylidene difiuoride (pvdf) membrane hydrophones [6] became
available that time waveforms such as those of Fig. 1(b) became commonplace in the literature and there
followed a widespread acceptance of nonlinearity in medical ultrasound systems. Fig. 1 shows the
distortion observed experimentally in an initially sinusoidal waveform as the drive level is increased. The
transducer was a 3.5 MHz, 13 mm diameter medical imaging transducer. The hydrophone was a Marconi
pvdf membrane positioned oo-axially 200 mm from the transducer. The increase in drive level between (a)
and (b) is 20 dB. At low drive (a) the initial waveform is a sinusoidal pulse whose peak positive pressure
(P+) and peak negative pressure (P-) are comparable as are the slopes of the waveform in the

compressional and rarefactional phases. The distorted waveform (b) however shows a marked top-bottom
asymmetry anda much steeper compressional phase in comparison to the rarefactional phase. This is
characteristic of the distortion caused by nonlinear propagation as observed in medical ultrasound
systems. The distorted waveform does contain one feature which is only indirectly caused by nonlinear

propagation. that is the ringing at about 20 MHz which is particularly pronounced on the raretactional side
oi the largest positive half cycle. This ringing is due to a resonance of the hydrophone and is discussed
further in the next section. It is relatively easy to show that the distortion arises from nonlinear propagation
in the medium (water) by repeating the measurements close to the transducer where no distortion would
be observed as the drive level is increased.

Although it is now known that diagnostic medical ultrasound systems can generate nonlinear effects in
water [7] and in tissue [8] there has been little change in the way that such systems are analysed since
the theoretical treatments of nonlinear propagation are neither common nor easily implemented. In the
following sections-some of the problems of measurement and characterisation are discussed and some of
the theoretical methods of predicting medical ultrasound output are reviewed.

2. MEASUREMENT AND CHARACTERISATION OF NONLINEAR FIELDS

2.1 Hydrophone frequency response '

The main problem in measuring the acoustic output oi medical ultrasound systems arises from the wide
bandwidth that is generated by nonlinear distortion. A plane sinusoidal wave will distort to become a
saw-tooth whose harmonic amplitudes vary as f/n where n is the harmonic number. In general this 1/n fall
off will be observed in all strongly shocked waveforms. It is therefore important that the hydrophone
bandwidth is as wide as possible and preferably fairly flat. Fig. 2 shows the magnitudes of a Fast Fourier
Transform (FFT) oi the two waveforms in Fig. 1. At the low drive level (Fig. 2a) almost all the energy is in
a single peak centred around 3.5 MHz, the centre frequency of the transducer.
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Fig. 2: Spectral magnitudes of time waveforms in Fig. 1 ; (a) low drive level (b) high drive level (+20 dB).

dashed line indicates 1/f fall off in amplitude.
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As the drive is increased (Fig. 2b) the distortion causes peaks to appear in the spectrum at multiples of
the centre frequency. This is analogous to harmonic generation in the continuous wave (CW) case. In the
high drive case the spectral magnitudes show two artifacts caused by the hydrophone response. These
can be seen by comparing the measured magnitudes with the dashed line which indicates a 1/f tall-oft
starting from the centre frequency. First there is little signal above 30 MHz and second the amplitudes are
higher than expected around 20 MHz, the reasons for this are apparent in the hydrophone frequency
response (Fig. 3).
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Fig. 3: Predicted membrane hydrophone response.

The two main factors that dominate the hydrophone response are the thickness resonance of the
membrane and cable resonance. The effect of the cable resonance can be minimised by reducing the
cable length. The hydrophone used here (made by SEC Research) had two pvdt films (25 micron thick)
laminated together and its main resonance corresponded to the membrane being halt a wavelength thick
at the resonant frequency (about 20 MHz). The response then falls off rapidly beyond this.

In theory it should be possible to deconvolve the hydrophone response from the waveform. In practice it is
difficult to determine the magnitude and phase of the hydrophone translertunction over a sufficiently wide
bandwidth. An alternative approach is to use a hydrophone amplifier that has a frequency response that
starts to fall off at around the hydrophone resonance. thus extending the flat region of the response. This
does introduce other potential problems such as accurate characterisation of the amplifier and the
possibility of the amplifier saturating when large signals are applied. The effect of the thickness resonance
can also be reduced by using a thinner membrane. GEC Marconi have produced such devices with a
single film of 9 pm thickness. The main drawback of these (coplanar) hydrophones is the need to use
distilled. de-ionised water as the measurement medium to prevent electrical coupling between the two

sides of the membrane. In the bilaminar hydrophone the earth connection for each pvdt film is on the
outside so there is no need for de-ionised water. Other hydrophone types are available such as pvdt
needle probes which tend to have a poorer higher frequency response when compared to the pvdt
membrane hydrophones and ceramic probe hydrophones which tend to be rather more resonant than
pvdt membranes. Smith [9] illustrates these points in a comparison of a number of hydrophones with
particular reference to their use in medical ultrasound fields. In general hydrophone linearity should also
be considered but pvdt is essentially linear so should not cause any problems.

Although nonlinear effects cause measurement problems by virtue ot the wide bandwidth of distorted
signals it can be used to good effect in the calibration of hydrophones. The National Physical Laboratory
(NPL) routinely uses nonlinear distortion to allow the calibration of hydrophones at integer multiples of 1
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MHz up to ’20 MHz. A strongly shocked wavetorm (with a lundamental frequency of 1 MHz) is recorded

using a secondary standard hydrophone. The device to be calibrated is then substituted and the outputs

compared [10].

2.2 Hydrophone size and positioning

An important consideration for hydrophones in medical ultrasound is size. Fundamental lrequencies for

imaging systems tend to tail in the range 1 to 10 MHz giving wavelengths in water of 1.5 to 0.15 mm. The

fundamental beamwidths are typically a lew millimetres or less hence in order to resolve the spatial detail

01 these pressure fields hydrophone sizes need to be of the order of 1 mm or less. The harmonics

however are generated with narrower beamwidths than the fundamental as can be seen in Fig. 4 which

shows a section through the focal plane of a locused CW ultrasound beam. In the focal plane we observe

the same sort ct directivity pattern for the fundamental that would be observed in the fartield of a plane

circular radiator (is 2J,(x)/x ). The harmonic beams get narrower and the sidelobe levels get lower with

increasing harmonic number. In the central part ol the beam it is found that the beam pattern for the n'”

harmonic varies as the fundamental beam pattern to the n‘" power. This corresponds to -3 dB beamwidths

for the harmonics that vary as 1N; It should be noted that Fig. 4 corresponds to conditions at only

moderate nonlinearity. At higher drive levels the lundamental amplitude would be reduced in the main

lobe due to the transfer ol energy to higher harmonics and would ultimately become saturated. One of the

implications of the narrower harmonic beamwidths is that the harmonic amplitudes will be averaged

across active area the hydrophone. This will cause the peak positive pressure to under-estimated.
Gallantree and Smith [11] showed that in certain circumstances this could lead to errors of 50% or more in

the peak positive pressure (P+).
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Fig. 4: Measured radial pressure variation at harmonics. Fundamental frequency = 2.25 MHz, axial range

= focal distance = 440 mm, aperture radius = 19 mm. '

The narrow beamwidths of the harmonics also necessitate accurate alignment at the source transducer

and accurate positioning ol the hydrophone. This is olten done with micro-manipulators or stepper motor

assemblies. An alternative approach to accurate positioning 01 a single hydrophone is to use an arraypf
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closely spaced hydrophones as found in the NFL Ultrasonic Beam Calibrator (UBC) [12]. Other methods

for measuring the output of medical ultrasound systems include radiation force balances [13] and RF

power meters [14].

2.3 Characterisation of ultrasound systems

Given that it is possible to find a hydrophone that will faithfully reproduce the acoustic pressure the next

problem is deciding how to characterise the output of medical ultrasound systems. A few of the more

commonly used parameters are described below but nonlinearity causes a very significam problem here:

a measurement taken at one particular drive level can not be scaled to represent another drive level.

Similarly measurements made at one position in the field cannot be translated (easily) to give information

about another position in the field with a different geometry. One solution to this problem is only to

measure parameters at the location where they have their maximum and for the highest drive levels. This

is only a partial solution since it only panially describes the pressure field and in any case it is found that

for instance the position where the peak positive pressure occurs in the field is usually different to the

position where the peak negative pressure occurs.

Another consideration in choosing the parameters to characterise medical ultrasound systems is their

relation, if any. to the onset of biological effects A number of possible mechanisms for bio-effects exist

(eg. cavitation, heating, mechanical shear and streaming) but their relative contributions are not always

clear, hence it is not easy to indicate which output parameters should be minimised to reduce the

likelihood of bio-effects. Currently there is evidence of a threshold for biological damage by heating. There

are no confirmed reports of adverse effects in living mammals from increases in body temperature of 1 'C

or less and serious damage can resultfrom prolonged elevation of the body temperature by 2.5 'C or

more [15]. For further reading a range of bio-effects papers can be found in a special issue of Ultrasonics

[16] and a review of the epidemiology of ultrasound exposure can be found in Ref. 17.

The most directly observable quantity is the pressure waveform but owing to nonlinear distortion and the

top—bottom asymmetry there are a range of parameters that might be significant, for example: peak

positive pressure, peak negative pressure. rise time, pulse length, fundamental amplitude etc. There are

also many derived quantities that could be used such as intensity (pulse average, temporal average,

spatial average). A recent standard [18] from the International Electrotechnical Commission (IEC)

identifies three acoustic parameters as important in characterising diagnostic ultrasound. The parameters

chosen are; the peak negative pressure (P-). the spatial peak, temporal average intensity (IN) and the

output beam intensity (lab). The standard, amongst other things, sets levels for these parameters below

which no declaration of output levels is required and clinically such systems could be considered as totally

safe for any application. The proposed thresholds are 1 MPa for P-. 100 mW/cm‘ for I.” and 20 mW/cm2

for lab. This is in broad agreement with a statement from the American Institute of Ultrasound in Medicine

(AIUM) [15] which points to the lack of any confirmed biological effects in mammalian tissues exposed in

vivo to unfocused ultrasound with intensities (lw) below 100 mW/cm” or to focused ultrasound with

intensities below 1 WIan.

A parameter that gives some indication of the degree of distortion is the plane wave shock parameter

c: Bekx. (13 is the nonlinearity parameter of the medium (3.5 for water at 20 ‘C). s is the acoustic Mach

number i.e. the particle velocity divided by the propagation velocity, k is the wavenumber and x is the

distance travelled by the wave). A value of 0:1 indicates the stage at which a vertical discontinuity is just

starting to form, at this stage the distance (x) is known as the plane wave shock distance (In), is.

1,, = ‘l/(ler). The plane wave shock parameter and shock distance must be used with caution in the
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ditfractive fields of real ultrasonic sources since they take no account of the spatial variation of the
pressure field. In an attempt to allow forfocusing gains and diffraction in medical ultrasound systems a
variant of the shock parameter known as 0,, has also been defined [19]

To add to the difficulties of acoustic characterisation even determination of parameters like the effective
aperture radius, amplitude shading and focal length is not trivial. Even when it is possible to disconnect
the transducer from the system and drive it CW at low amplitude it is not easy to accurately characterise
the source [20,21,22]

The choice of medium for calibration and bio-effects experiments is also important. Water is well
characterised, readily available and easy to work with buthas the drawback that high levels of nonlinear
distortion occur because it has a low absorption coefficient in comparison with tissue (at frequencies of
interest). In addition the frequency dependence of absorption in water is higherthan in tissue (square law
as opposed to roughly linear). Such factors are highly significant when nonlinear distortion is present as it
is often the high frequency absorption that ultimately limits the generation of harmonics and hence the
maximum pressures observed. A number of alternatives are available; fluids such as castor or silicone oil
provide higher absorption than water and are relatively easy to work with. Tissue mimic gels can be
acoustically closer to tissues than oils but are not easy to use as it is difficult to position and move
hydrophones. To compound the problem many tissues are not well characterised acoustically, especially
not over the wide range of frequencies generated by highly distorted ultrasound. Nonlinear effects can
also cause absorption measurements to become dependent on the acoustic drive level [23,24] and the
position of the sample in the field [24].

3. THEORETICAL PREDICTIONS OF NONLINEAR EFFECTS

The complexity of nonlinear propagation and medical ultrasound systems indicate that it is unlikely that an
accurate theoretical solution will be simple. It seems sensible then to investigate a variety of theoretical
models that range from the fully accurate but computationally intensive to the more approximate but easily
implemented models.

One dimensional solutions to the nonlinear wave equation, such as those of Blackstock [25], can provide
some useful information for medical ultrasound systems but are unable to reproduce the fine detail and
phase variations seen in "real" pressure fields. Highly diffracted and focused pressure fields require more
rigourous treatment. Smith and Beyer [36] commented on the "lack of appropriate theoretical analysis"
when they published nonlinear measurements on a focused acoustic source operated at 2.3 MHz. One of
the most significant theoretical advances came in 1969 when Zabolotskaya and Khokhlov [27] published a
solution of the nonlinear wave equation for a confined sound beam in which it was assumed that "the
shape of the wave varies slowly both along the beam and transverser to it". In 1971 Kuznetsov [28]
extended their treatment to include absorption and the resulting equation is now widely known as the KZK
equation after its originators, The solution is also known as the parabolic approximation to the nonlinear
wave equation and is equivalent to the paraxial approximation used in 'optics. The KZK equation accounts
for diffraction, absorption and nonlinearity, and it is valid for circular apenures that are many wavelengths
in diameter and will accept arbitrary source conditions.

In 1983 Lucas and Muir [29] published a perturbation solution for the second harmonic component of a
focused aperture, Their solution was based on the KZK equation and was valid for quasi-linear drive
levels. i.e. it was assumed that there was Sufficient nonlinearity to generate some second harmonic
without affecting the fundamental amplitude significantly. At about the same time a group from Bergen
University, Norway [30] published numerical results based on a frequency domain solution of the KZKI
equation under conditions of strong nonlinearity. The solution accounted for any number of harmonics and
the transfer of power between harmonics and so it was possible to predict effects like saturation of the
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fundamental. Comparisons ol the numerical solution to the KZK with experimental measurements have

shown it to predict accurately pressure fields similar to those generated by diagnostic ultrasound.

Continuous wave pressure lields lor both plane [31] and tocused sources [32] show good agreement lor

peak pressures up to about 1 MPa. Figure 5 compares experimental measurements with the numerical

solution ol the KZK equation along the axis of a locused radiator operating at 2.25 MHz. Although the

acoustic source used had a larger diameter and longer local length than those used in diagnostic

ultrasound. the local gain (G) given by the Rayleigh distance (keg/2) divided by the local length (D) is

comparable with diagnostic systems. The advantage of this slight scaling up is that the spatial variations

in the pressure field are easierto monitor with a 1 mm diameter hydrophone. In Fig. 5 there is good

agreement between experiment and theory for the lundamental and harmonics up to the fourth, data for

higher harmonics is not plotted for clarity. Corresponding phase plots also show good agreement.

Pressure / dB re 1 MPa

 

0 400 600 800

Range / mm

Fig. 5: Axial pressure for locused CW source, fundamental to fourth harmonic; fundamental frequency

2.25 MHz, 19 mm radius. 440 mm local length, gain 3.9. (— Experiment, - - Theory).

The numerical solution has also been adapted for pulsed lields and compared lavourably with

measurements on pulsed systems [22.33]. Figure 6 shows the measured and predicted wavelorms and

spectral magnitudes tor a pulsed, focused radiator with dimensions similar to those used in medical

ultrasound systems. Crucial to the good agreement seen in Figures 5 and 6 was the availability at a well

characterised acoustic source. The main dilliculty in modelling "real" diagnostic lields is determining the

initial source conditions [22] Le. the initial wavelonn, the source aperture and shading and the geometric

local length. The parabolic approximation imposes some limitations on the allowed geometries. Sources

similar to those typically used in diagnostic ultrasound can be modelled accurately lor lield points that are
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less than about 20 degrees off the acoustic axis. At short ranges the aperture half-angle subtended by the
field point shout also be less than about 20 degrees. This can be a serious limitation in Iithotripsy fields
where the aperture angle can be as great as 45 degrees.

The numerical solution of the KZK is limited to some extent by computer processortime. The higher the
required drive pressure then the more harmonics that are needed in the solution, this in turn increases the
processor time. it too few harmonics are included then energy remains trapped at lower frequencies and
distorts the spectrum. The required spatial resolution also affects the processortime since the solution
operates on a finite difference grid and if the grid points are closely spaced then more points are needed
and hence more processor time. Fig. 5 shows the effect of the grid resolution as the theoretical solution
starts smoothing the more rapid axial pressure variations that are found closer to the source tie. at
ranges less than 100 mm). Further details of the solution to the KZK equation that was used to generate
the theoretical predictions of Figs. 5 and 6 are given in the Appendix.
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Fig. 6: Pulsed pressure field at axial range of 300 mm for focused source; 19 mm radius. 440 mm local
length (— Experiment, - - Theory)

A recent new approach to modelling pressure fields due to circular apertures is that of Christopher and
Parker [34] who use a plane wave spectrum approach and discrete Hankel transforms to calculate
diffraction ellects. Their solution is not limited by the parabolic approximation and shows good agreement
with previous measurements and solutions. Another approach has been to assume that the radial
pressure field has a Gaussian profile. Although this doesn't predict the near field features that a full
diffraction model would show it does reduce the computer processor time required. Datecki et at [35] used
a Gaussian beam model to predict heating rates due to the absorption of finite amplitude ultrasound on
the acoustic axis of a focused transducer. They reduced the theoretical solution to an analytical form and
showed agreement with experimental measurements of heating rate. _

4. SUMMARY

Medical ultrasound systems ranging from diagnostic imaging systems to Iithotripters operate under
acoustic regimes where nonlinear effects are very significant, It is necessary to make allowances for this
in both the'way that measurements are made and in the application of theoretical models. it is essential to
characterise the acoustic source carefully in order to provide accurate initial conditions for numerical
models. Currently good predictions are available for simple sources operating CW or pulsed in water with
some restrictions on geometry. More work is required for accurate in vivo predictions for both diagnostic
and therapeutic medical ultrasound systems. 1
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APPENDIX: NUMERICAL SOLUTION OF THE KZK EQUATION

LIST OF SYMBOLS

a - aperture radius.
b - diffusivity of sound (= Zack’).
c - speed of sound (1486 m/s for water at 20°C).
f - frequency. (f0 - fundamemal frequency).
G - focusing gain ( = RJD).
g - Fourier coefficient in solution.
h - Fourier coefficient in solution.

i - \I—_1.
k - wavenumber (= 21M).
In - shock distance (= 11M).
n - harmonic number.

p - acoustic pressure ( = P - Po).
p, - acoustic pressure at the source.

P - total pressure (static + acoustic).
Pg - static pressure.
P+ - peak positive pressure.
P- - peak negative pressure.
q - Fourier solution amplitude.
Ro - Rayleigh distance (= ka2/2).
r - radial coordinate.

t - time.
u - particle velocity.
u‘, - particle velocity at the source.
2 - axial coordinate.
a - absorption coefficient (2.5x10"5 Np m"Hz'2 for water).
13 - parameter of nonlinearity (3.5 for water at 20°C).
1' - shock parameter (= [ask/oz).
e - acoustic Mach number (= u/c).
g- normalised radial coordinate (= r/a).
e - harmonic phase.
7i. - wavelength (= oil).
a - normalised axial coordinate (= z/R.) or shock parameter (= (sea).
1: - retarded time (= u): —kz).
m - angular frequency (= 21d).
d> - scalar velocity potential.
‘P - Fourier solution phase.

V - gradient operator.
Vl - transverse gradient operator.
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A1 General wave equation

Following the work oi Zabolotskaya and Khokhlov [27], Kuznetsov [28] derived a nonlinear wave equation
for a scalar potential, 4). by considering the dynamics of a viscous. heat conducting fluid. The equation
was correct to the second order with terms for dillraction. absorption and nonlinearity:

3% I a 1 2 2 B ] Be 1
Ei—CZV¢—E[2ackv¢+(v¢) +2—A‘c—z E 1

The left-hand side of equation 1 is the three dimensional linear wave equation, of the three terms on the
right-hand side the first term is a linear term and accounts lor absorption. the second term is due to
convective nonlinearity and the third is due to nonlinearity in the equation of state.

A2 Parabolic approximation

Kuznetsov also showed that the equation (1) could be simplified, by approximation, in the case of a

quasi-plane wave field and the Laplacian (V2) can be replaced by the transverse Laplacian (Vf). A circular

aperture that is many wavelengths in diameter (i.e ka is large) falls in this category since most of the
energy is confined to a beam in the axial direction. This is known as the parabolic (or paraxial)
approximation and is equivalent to the Fresnel approximation that is sometimes used in the diffraction
integral for near-field calculations. Kuznetsov‘s parabolic approximation can be expressed in a normalised
form [36]:

82 2 8’ _ R, 3‘ _2
[4maO—Vl—4akofi Jig—[2,2 2 ‘

where ,7 (= p/po) is the acoustic pressure normalised by the source pressure and r(= ml —kz) is the ‘
retarded time, i.e. includes a phase term for a plane wave travelling in the z direction. In this equation a is
the axial coordinate normalised by the Rayleigh distance (not the shock parameter) and t; is the radial
coordinate normalised by the aperture radius, i.e.

22
0' =— and = r/a

kaz C

A trial solution was then assumed in the form of a Fourier series (tor the time waveform) with amplitude
and phase that were functions of the spatial coordinates, i.e.

  

p(o, C, 1:): $1 q~(cr, C,1:) sin(n‘r + mm, C, 1)) or

p(O, c, r) = i] g_(o, :, 1:) sin(n‘r) + Ma, Q, 1:) cos(n1:) 3

where g. = q. 608%. hr = r1. simv.
and n is the harmonic number, with n=1 representing the fundamental frequency. Substituting the trial
solution (3) into equation 2 and collecting terms in sin(n‘r) and cos(n1:) gives a set of coupled differential
equations for gn and h":

    

8g. 1 M. 1»—1 ~
a6 =—n2uR.g.+5Vih.+ up files... -h.h...)-P:§H(g,,.g,, +h,,..h,.) 4

8h. 1 nR, PM ~_
30 = —n2ovR.,h. +5Vig. + 2,0 (Lying.-. +g.h.-.)+P:§Hih,-.g, —g,..h,,) 5

These equations were then solved numerically
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A3 Numerical solution

Equations 4 and 5 form the basis of the numerical solution which was implemented by Aanonsen in a

FORTRAN program called FOCAB [37]. Standard numerical approximations were used for the derivatives

and the pressure iield was calculated using a finite difference technique. The harmonic coefficients (9,.

and h") were represented by pairs of two-dimensional grids, one such grid is shown in Figure A1.

 

f Acoustic axis

Initial

values

Fig. A1: Simplified finite difference grid.

Thus it the filled circles of Figure A1 represent the current values of 9,, in the radial direction, then

equation 4 relates them to the next set of values along the acoustic axis (denoted by the empty circles).

The numerical scheme replaces the panial derivatives of equation 4 with small increments, e.g.

3:. g'rg.
86 becomes AU

where g‘. is the new value of 3,. Similar numerical approximations were used to replace the tran5verse

gradient operator and the resulting equations were solved to give the change in the harmonic component

(3‘, —g,,) for a small step (A0) in the axial direction. The initial conditions were given by the radial pressure

distribution across the piston face and ballle (represented by the-tilled squares in Fig A1). The physical

meaning of the scheme described by equations 4 and 5 can be seen more clearly it the equations are

written in a slightly different term. it we take equation 4 and express it in terms of the original 2 coordinate

we get an expression tor the change in g" with axial range (2):

  

1

4er?0

ll ‘l'I-l '°
th» +£(5‘El‘glgn—A _ I'th 4) “P 3‘ l(8,-.8, + hp<nhp)] 5

as. 1
E——n qg_+

 

This shows that the change in the field 9,. with distance along the z axis is due to three terms:
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Attenuation.
This term has an n2 dependence (i.e. it varies with the square of the frequency) and is proportional to (1
(the absorption coefficient); thus we have the classic frequency squared dependence of absorption in a
fluid.

Diffraction.
This term has a reciprocal dependence on nRo; thus diffraction becomes less important as the frequency
(or harmonic number) increases and as the aperture radius increases. In other words, the more
wavelengths across the aperture the more the beam looks like a plane wave travelling in the z direction.
Diffraction also depends on the transverse gradient, with rapid changes in the field in the radial direction
giving rise to large diffraction terms, such as occur at the piston edge. It was implicit in the initial
assumptions that the field would be quasi-plane wave; hence the absence of the longitudinal term in the
gradient operator.

Nonlinearily.
The nonlinear term is proportional to n. hence nonlinearity becomes more important with increasing
frequency. It also depends on the reciprocal of ID, the plane wave shock distance.

The nonlinear term is the only coupling term in the equation, i.e. it intermixes terms of dilferent harmonic
number. If the products under the summations are evaluated it is found that they pick out all combinations
of harmonics that have sum or difference equal to the harmonic (n) in question. For example in evaluating
the fourth harmonic the nonlinearterm involves products of the following harmonics: 1 and 3, 2 and 2, 1
and 5, 2 and 6, 3 and 7 etc. This term is also the only one with any connection with the drive level (pa)
so small signal runs were achieved by reducing the pressure across the piston face, and hence the Mach i
number so that nonlinear generation became insignificant.

A similar result to equation 6 is obtained from equation 5 for the change in h" along the axis.
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