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I. INTRODUCTION

Statistical Energy Analysis (SEA) provides an estimation of broadband frequency vibration of large
and complex mechanical systems. SEA estimates have beenfound to be (in general) more reliable
and acceptable than those obtained from other approaches. especially at high frequencies, when the
deterministic analysis of individual modes become less accurate. But the crucial questions are:
'What are the criteria to quantify the reliability?’. and, 'What uncenainty is associated with the
prediction of response when using this approach?. These quesrions arise because of the fact that
SEA is based on the concept of subsystems with random parameters in which the time-average
response spectrum is calculated as an average across an ensemble of similar systems. Such a
speclrum is then integrated to give the total energy flow (or level), combining information from all
frequencies in an analysis band. In practice. one is usually concerned to estimate the vibrational
behaviour of individual physical systems (e.g., a rocket launcher payload) or to infer SEA
parameters from tests on a single physical realisation. Since no single physical system can
correspond precisely to the assumed ideal theoretical model (ensemble average), practical
differences are likely to cause the actual behaviour to deviate greatly from SFA estimate. or lead to
a typical inferred parameters. The degree of uncertainty will depend on many factors, such as the
range of variation of the dimensions of the cot: led Subsystems, the fabrication tolerances, the
variations in the properties of the materials. t e number of modes that are employed in the
averaging process, uncertainties in the loss factors, and in the modal densities (or the degree of
modal overlap). During the past 30 years ntost of the work carried out on SEA has been directed
toward the prediction of the mean response of coupled systems. Very little attention [1] has been
given by the researchers to the problems of uncertainty of response estimates; namely. the
variance, the associated probability distributions, and confidence limits. The principal objeCtive of
the research programme was to study the uncertainty/pf the predictions made by the application of
Statistical Energy Analysis in terms of perturbation of subsystem geometry. In the examples
described in this paper this is achieved by analyzing two cases of multi-mode coupled systems
using exact calculations and establishing the influence of the perturbations of the structural
parameters on the sensitivity of the predictions of the quantities of interest in SEA. The cases
analyzed are coupled beams and line-coupled plates systems.

2. TWO COUPLED BEAMS SYSTEM

The coupled system analyzed consists of two long, steel cantilever beams coupled at their free ends
by a non-conservative coupling (damped translational spring). Beam 1 (driven) has a mean length
of 3.68 m, a width of 0.025 m and a thickness of0.003 m. Beam 2 (receiver) has a length of 3.58
m. a width of 0.025 m and a thickness of OJDZ m. 'I‘ran5verse vibration of Beam I is generated by
a point harmonic force. Vibrational energy is transmitted from beam 1 to beam 2 b shear force and
velocity at the coupling point. A solution for the bending displacement of beam i (I=l .2) is sought

Pm.I.O.A. Vol 12 Part 1 (1990) 543  



 

Proceedings of the Institute of Acoustics

UNCERTAINTY IN SEA PREDICTION

to have the form _ _ _

watxm) = (A. e‘J‘i’i + A: e‘fi‘i‘i + A; 6‘“ + A4 Ski“) cit“ . (I)
where A] and A2 represent the amplitudes of the propagating waves; A3 and A4 represent the

near-field amplitudes; k; and k2 are the flexural wave numbers of the coupled beams, and u) is the

frequency of vibration. The form of equation (1) satisfy the geometric and the natural boundary

conditions at the excitation position, the coupling point. and the clamped ends of the coupled

beamsBeam damping is taken into account by assurtting a complex Young‘s modulus. This leads

to a complex representation for the wave numbers and the wave speeds.

The time-average powertinjected into the coupled system is given by

E“: 1§Re(§ v.) , (2)

where T: and (hue the applied force and the velocity at the driving point. Re( ) and (*) denote

'real part' and 'complex conjugate' respectively.

The vibrational energy tnn‘smitted from the driven beam to the receiver is given by

_ I ~ ~

Pl2=jR¢i52c-V2ei . (3)

where 5% and Vacate the shear force and the velocity at the coupled end of the receiver beam,

respecrively. The shear force can be written as

§k=-Kc[‘;1c';2e} . (4)
where R; is the complex stiffness of the coupling element.

By using the approximation that only the resonmt modes are contributing to the energy content in

the frequency band of interest, and by employjpg the result of simple oscillator energetics, the
time-average total energies of the beams (E1 and E2) are calculated as twice the lime-average kinetic

energies. The latter is written for a beam of length l and mass per unit length m‘ as
l

fi=%mi'w2JR¢iWi(Xi) . wimii dxi . (5)

1| Penurbation Analysis
In order to investigate the sensitivity of the quantities of interest to small variations in one of the

structural parameters. the distribution sampling application of the Monte Carlo method [2] is

employed in the present work. The length ratio (l 1/12) of the coupled beams is chosen as the input
random variable for the purpose of perturbation analysis of the coupled beams system under study.
A sample of 32 elements of (ll/l2) is drawn randomly from a normally distributed random
population, This sample size is justified as being adequate to perform statistical calculations

according to the argument of Hodges and Woodhouse [3.4] that the frequency averaging has a
somewhat similar effect to including many more configurations of the coupled system. The
generated sample has values of mean and standard deviation which provide a coefficient of
variation of 10% of the mean length ratio of the coupled beams. For each given value of (ll/12). the
time averaged quantities of input power. power flow, and total beams energies of the coupled
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system are calculated and the results are then integrated over the frequency range of interest (1-50
Hz) to simulate the response to a band of white noise. The computations are carried out for ten,
randomly selected. points of excitation and the results are then averaged over the selected points.
The reason for exciting the system at different points is to approximate the assumption of
'uncorrelated excitations‘ made in SEA. The computed quantities form ensembles having a size of
32 elements. Each element in these ensembles represents an observation (output rando_m vgfiable)
from_one realization of the coupled beams system. Note that the produced ensembles Pin. Pt2. E1.
and E2 are for a given value ofinternal loss factors of the coupled beams. i.e., for a given value of

average modal overlap factor (May). The latter parameter is calculated as M3,, = \iM] M2 . where
M] and M2 are the average rrtodal overlap factors of beam 1 and beam 2 respectively. This is an ad
hoc relationship which is justified by the fact that M1 and M2 were chosen to be similar. The
process of calculations described above is then repeated for different May values to srudy the effect
of the latter parameter on the sensitivity of the predictions The different values ofthe average
modal overlap factor of the coupled beams are obtained by assuming different values of dissipation

loss factors 11] and 112. An attempt to obtain a tange of Mm, by assurtting different modal densities
for the coupled beams (i.e.. by assuming different lengths or different cross section areas) was not
found to be practicable because of computational difficulties at high modal overlap.

The effects of small variations (perturbations) in the geometry of the coupled system on the
sensitivity of the prediction are investigated by calculating the mean and the normalized variance
from the computed ensembles of the quantities of interest. The quantities selected for these
investigations are the power flow from the driven beam to the receiver beam, and the coupling loss
factor of the coupled system, because they represent the most important quantities in SEA
formulation. The coupling loss factor is calcnlated on the basis of the SEA hypothesis [5] as

 

P
(6)

(9N) {(El/Ntl-(I‘b/Nfl} -
where N1 and N; are the expected‘number_of modal frequencies in beams l and 2 respectively in
the selected frequency band. and (Er/N1)-(E2/N2) is the average modal energy difference Another
estimate for the coupling loss factor is obtained from a corresponding infinite coupled beams
system byusing the travelling wave method [5]. The latter estimate is used for the comparison
with those obtained from the finite system. The sensitivity of the predictions is also investigated
by studying the cumulative probability distributions of the coupling loss factor and the power flow
at different modal overlap conditions. The 95% confidence intervals for the mean values of these
quantifies are estimated on the assumption of a normal distribution. justified by the central limit
theorem. '

m:-

2.2 Results and Discussion

Figure (1) displays the mean values of the coupling loss factor (1112) of the coupled. multi-mode.
beams system against the average modal overlap factor (May) of the coupled system. It also
displays the estimate of coupling loss factor of the correspondingjnfinite system (1112-). Figure
(2) displays the mean values of the normalized power flow (Pu/Pin). Figure (1) shows that the
mean of rm has the tendency to increase as M“ increases, asymptotically approaching the estimate
of coupling loss factor of infinite system as the average modal overlap takes high values (M... 21).
This result is consistent with those of Davis and Wahab [6] and Davis and Khandokcr [7] for cases
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of coupling of two simply supported beams. Figure (2) shows that the mean value of the
normalized power flow is lower at high modal overlap than at low modal overlap. This result may
be attributed to the high dissipation in the energy of the driven beam. which is associated with the

increase in the intemal loss factors of the coupled beams over the range used to increase the modal
overlap factors of the beams. Figurcs_(l)and (2) also display the 95 per cent confidence intervals
for the calculated means of 11.2 and (Pu/Pin). The intervals define the degree of confidence that
the calculated mean: lie between two certain limits. The probability associated with the confidence
interval is called the confidence coefficient The widths of the intervals demonstrate the effect of
Mm, on the sensitivity of the predictions. The intervals are wider at low modal overlap than at high
modal overlap. This suggests that at high modal overlap the probability of obtaining estimates for
the above quantities which are close to the means is high. This result is confirmed by calculaa'ng

the normalized variance (variance/(mean?) values form; and (Pu/Pin) at different modal overlap

conditions. The results are plotted in figures (3) and (4) respectively. These figures show clearly
that the normalized variance decreases as May increases. The normalized variance takes relatively

small values at high modal overlap. A possible reason for this is that the frequency response of the
coupled beams is dominated by the well separated resonant peaks at low modal overlap which are
highly sensitive to small changes in structural details. The changes have no considerable effect on
the smoothed frequency response at high modal overlap. The comparison between figure(3) and

figure (4) shows that the normalized variance of coupling loss factor is always higher than that of
the normalized power flow. This is because the coupling loss factor is affected by the sensitivities
of both power flow and the energy difference of the coupled beams to system parameter variations.
Figures(9) and (10) display the cumulative probability distributions for a given sample of coupling
loss factor and the normalized power flow at different average modal overlap factor values
respectively. From thesefigures it can be emphasived that as M" increases, the probability that
any realization of m; or (Pu/Pt“) which is close to the mean value increases. This means that we
are certain that the calculated means of the above quantities are more reliable and acceptable at high
modal overlap than those at low modal overlap. The way of presentation of the cumulative
probability distribution provides a simple, and quick method of testing for normality. It is clearly
displayed that as Mu increases and takes values equal to unity and greater, the cumulative
distribution curves will have the shape of a straight line. This result suggests that the observations
came from a normal distribution [8]I which is similar to the assumed distribution of the input
penurbed parameter 11/l2. The results described above are supported qualitatively by experimental
investigations (not reponed herein).

3. TWO COUPLED PIATES SYSTEM

The coupled system under investigation consists of two rectangular steel flat plates; each has two
opposite sides simply-supported. The plates are coupled together along one edge via an elastic.
non-conservative coupling element which allows for translational as well as rotational motions of
the the coupled edges. The far edges of the plates are assumed to be clamped. Plate 1 has the
meandimensions of 2.75m x 1.5m x 3mm for the length, the widtlt and the thickness respectively.
Plate 2 has the mean dimensions of 2.65m x 1.5m x 3mm. The first plate (driven) is excited by a

point harmonic force of a unit amplitude. A similar approach to that of the previous model is point
harmonic force of a unit amplitude. A similar approach to that of the previous model is followed in
this case. An empirical relationship between the variance of coupling loss factor, the number of
modes involved and the average modal overlap factor of the coupled system is developed
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. 3.2 Results and Discussions
Results for the mean of coupling loss factor and the normalized power flow of the two-plate model
are shown in figures (5) and (6) respectively. Figure (5) also displays the diffuse field estimate of
coupling loss factor of the corresponding infinite system. Similar conclusions to that of twobearn
model are drawn. Results for the normalized variances of the coupling loss factor is shown in
figure (7). Figure (8) shows the effect of the actual number of modes on the sensitivity of the
mean value of coupling loss factor._ This figure was obtained by carrying out the analysis in
different frequency bands. it shows that. more titan five resonant modes are needed (when
Mapl) in order to obtain good SEA results. Cumulative probability distributions are shown in
figures (I l) and (l2) for the coupling loss factor and the normalized power flow respectively. The
results are qualitatively supponed by experimental results (not reported herein).

4. CONCLUSION

From the results presented above a general conclusion may be drawn that the travelling wave
calculation Overestimates the coupling loss factor of the coupled one-dimensional and the two-
dimensional systems when the average modal overlap factor is small (less than 1.0). The
sensitivity of predictions of the coupling loss factor and the normalized power flow to geometric
parameter variaan is highly affected by the degree of modal overlap of the coupled system. High
variances are observed for the above quantifies at low values of modal overlap factor. it is
concluded that the coupling loss factor is much more sensitive quantity than the normalized power
flow. because of the the presence of the energy difference term in the denominator of the
expression for the coupling loss factor. The above conclusions supported by experimental
investigation. It is found that the number of resonant modes of coupled plates system needs to be
lg'reatfer than five. at high modal overlap, in order to obtain an acceptable estimate for the coupling
oss actor.
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