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1. INTRODUCTION

Videophones have been available from ET for many years but they suffer from the disadvantage
of requiring a large bandwidth for transmission. Recently, a facial image coding system has been
developed at British Telecom Research Laboratories (BTRL) which is capable of producing
lifelike movements of the head and face at data rates low enough to be transmitted over ordinary
telephone lines. Such a system could be used to provide (amongst other applications) a pseudo—
videophone, if realistic mouth movements matching the transmitted speech could be supplied.
This paper describes a technique for generating mouth movements for a synthetic face based on
analysis of speech data. The technique has been incorporated into a real-time demonstrator.

2. IMAGE SYNTHESIS SYSTEM

Model based coding methods [7] code an image or sequence of images using knowledge of the
scene to model the objects in the scene. The motion of the objects is determined, and this motion
reproduced in the models. This creates a synthetic image sequence which marches the original
sequence.

One of the most popular areas of research in this area is in the generation of synthetic facial image
sequences [4H6]. A realvtime synthetic face generation system is now in operation at BTRL [S].
This system produces facial expression changes using a method based on Ekman and Friesens'
system of action units [1]. An action unit defines a single facial movement such as a blink.
eyebrow raise or lip purse. Each action unit can be invoked with aparameter which defines the
proponion of that action unit to be applied to the model.

The ability to control such high-level actions as mouthshape. jaw-movement. eyebrow position
etc. raises the intriguing possibility of animating a facial image to make it apparently 'speak' an
incoming speech signal. This technique would find applications as a pseudo videophone, in
cartoon animations. recorded announcements etc. Clearly many levels of sophistication are
possible in what is detected in the speech signal and conveyed in the image. This paper concerns
itself with the basic requirement of generating realistic mouthshapes. In the demonstrator. these
are supplemented by rotations and translations of the head. blinks and eyebrow movements.
These movements are random (within the constraints of realism) and contribute greatly to the
nanrralness of the demonstrator.
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3. DESCRIPTION OF THE TECHNIQUE

One possibility for generating mouthshapes is to recognise (using some speech units) the
incoming speech and then transmit facial image codes which correspond to these units. It is likely
that such recognition would need only a few broad acoustic or phonetic classes to obtain realistic
facial images. In practice we do not need to make the decoding of the speech explicit because we
can use mining data in which every video frame has been labelled with an image code (coding the
mouthshape) and the corresponding speech frame has been labelled with a code derived from a
speech vector-quantiser. These correspondences can be used for automatic training of our model;
the process of generating the facial image codes for some speech input is then one of deciding
what the most likely sequence of image labels is. given a sequence of speech labels. Such a
model needs to exploit information about both the co~occurrences of image and speech symbols
and also about likely sequences of image symbols (the latter is required to generate a smooth
sequence of output symbols). An attractive method of combining both types of information is a
fully connected Markov Model (MM) (Figure 3.1).

Here each state is uniquely identified with an image code and also has associated with it a set of
probabilities of emitting each of the speech codes

 

Figure 3.1 A fully connectai eight state Markov Model (states represent mouthshapes).

Note that because the states are explicitly identified at training time the model is not "hidden" at
training time and conventional techniques for optimisation are not required. However. the model
is "hidden" when it is required to decode the speech signal. in the sense that the most likely
sequence of states (mouthshapes) which generated the speech data is estimated. A funher
advantage of using anMM is that the standard Viterbi decoding algorithm can be used to estimated
this sequence.
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An utterance produced by the model can be visualised as a sequence of states with explicitly
associated mouthshapes emitting a sequence of speech segments (figure 3.2).
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Figure 3.2 A diagrammatic representau'on of a model producing speech.

4. TRAINING THE MODEL

Synchronous speech and image data was collected from three speakers. In the experiments
described here the data from only one speaker was used. because as yet only one data set has been
fully annotated with the mouth height and width parameters.

The speech data was band limited between 50 Hz and 3.5 KHz. A pre-emphasis filter was
applied and the speech was blocked into 40ms frames (320 samples). The frame overlap was
20ms. The Hamming window size was chosen to obtain parameters at a convenient multiple of
the video frame rate. in this case double. A number of pamneterisations of the speech data were
tn'ed; LPC coefficients, LPC reflection coefficients. LPC cepstral coefficients and Mel Frequency
Cepstral Coefficients (MFCCs
section 6.3.

During the recording the teeth of the subject were painted using a black spirit-based dye so that the
inner lip margins could be reliably distinguished from the teeth. The subject was seated so that
the mouth region of the face filled the frame when the more extreme vowels were spoken. Two
lKW quartz halogen floodlights were placed either side of the camera. and the lighting level was
adjusted so that the mouth area would appear black and the rest of the image white when a
thresholding algorithm was applied, The image data was then processed using a semi-automatic
procedure to measure the height and width of the mouth opening. The data was captured at a rate
of 25 frames/s so a set of parameters was obtained every 40ms.

Fifty phonetically rich sentences were recorded. each sentence being approximately four seconds
long. This gave 10.000 vectors of speech coefficients and 5,000 image data vectors. Both sets
of data were vector quantised using the same codebook generation and vector quantising
algorithms. 16 image-codes were found to be adequate to represent the range of mouth
movements. and 64 speech codes were used. This gives 3 MM with 16 states. each representing
a panicqu vector quantised mouthshape: Each mouthshape has a probability associatedwith
producing each speech vector. The model transition probabilities were estimated directly from the
image data. and the speech code output probabilities for each state from the joint occurrences of
image and speech symbols.
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5. USING THE MODEL T0 GENERATE A MOUTHSHAPE SEQUENCE

Once the model has been trained it is possible to calculate the most likely sequence of
mouthshapes given a particular utterance. This is done using the Viterbi algorithm [5]. Given a
sequence of vector quantised speech segments and a MM as described. the Viterbi algorithm
calculates the most probable path through the model, which is equivalent to the most probable
mouthshape sequence.

The mouthshape sequence calculated using the Viterbi algorithm is translated into action units with
associated proportions using a simple lookup table.

6. EXPERIMENTS AND RESULTS

6.]. Error Measures
While it is possible to measure the percentage of time that the mouthshapes (image codes)
predicted by the system match the vector quantised mouthshape in the original sequence exactly,
this does not give a particularly good idea of how good the end result will appear. For example,
if 50% of the mouthshapes chosen are correct and the other 50% are very different from the
required mouthshape the synthesised sequence will be subjectively less acceptable than a system
where 25% of the mouthshapes are correct and the other 75% are close (in some sense) to the
required mouthshape.

Where percent correct is used as an error measure the percentage of time that the chosen
mouthshape was in the top N candidates is also quoted. The second best mouthshape is defined
to be the mouthshape with the smallest Euclidean distance between its parameters and those of the
required one. the third best is the next smallest and so on. The other error measure which is used
is mean squared difference (msd). The squared differences between the height and width of the
required mouth and that of the chosen mouth are calculated. and the mean squared difference is
calculated for the whole utterance. The msd which wouldresult from an entirely random selection
of mouthshapes (the expected msd) is also shown for reference. It is worth noting that an msd of
half the expected msd is that which would be achieved by a system producing an error rate of
50% with incorrect mouths being chosen randomly,

6.2. Experiments
Two main sets of results are presented. The first set (figure 6.l) compare different speech
parameterisations for this problem For these, the model was trained on the first 40 sentences in
the database. and tested on the final 10. The second set (figure 6.2) show the effect of varying
the amount of training data. Here. the training set size was initially 10 sentences and was
increased to 20.30 and 40 while the test set was correspondingly decreased from 40 to 10. These
experiments were carried out on all of the speech parametensations. A summary of results are
shown in the next section.

6.3. Results and Discussion
A comparison of four different speech data parameterisations is shown in figure 6.1. It can be
seen that the LPC Cepstral coefficients give the highest percent correct and correspondingly the
lowest msd. MFCCs give the worst results. This may be because LPC coefficients reflect the
vocal tract shape and therefore the mouthshape better.
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Figure 6.1 A comparison of different front-end pmmeterisations.

The effect of varying the amount of training data was investigated. The results were much as
expected; increasing the training set size increased the error mic on the training set. and decreasedthe error rate on the test set The percent correct seemed to level out at about 25% after 40 training
sentences had been presented. This is not conclusive but there was no more data availabie for
funher tests.

Pmml WWI for LPG cadmium Percent correct for LPC t'epstral ooefficacnis
.e

:5

  “
r», 7‘ , 5" /:

e {a4-: i
a l 2 S A I 2 I I

Nunbanfmmmcei used inillinifi‘ (AID) Number a! Imam! used in naming (110)

Figure 6.2 The effect ofincmasing the amoum of training data on percentage ofcci'tect
mouihshapes chosen.
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7. REAL-TIME IMPLEMENTATION

The simplest implementation of the Viterbi algorithm waits until the speech is ended before tracing

back, which is clearly not practical for any real—time application. Partial mseback (as descn'bed

in [2]) waits until all the paths have converged before making a decision about the state sequence.

Any delay introduced into our system must not vary, otherwise synchronisation of speech and

image becomes very difficult. A constant traceback (maximum size 1501115 to enable normal
conversations to take place) was therefore performed after processing each frame.

Experiments were also carried out in which the traceback extended beyond the delay at which the

last mouthshape was transmitted. At the delay point the mouthshape currently the most probable

for that timesiot is transmitted to the hardware. but a different mouthshape might later become
optimal for that timeslot if a different path subsequently had a higher probability. This method

has the advantage of taking more information into account for any given mouthshape, but the

inherent smoothness gained by using a single Path could be lost. The two methods are shown

diagrammatically in figure 7.1.
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Figure 7.1 Two methods of calculating Figure 7.2 Maximum and minimum errors

the mouthshape to be transmitted. (compared with full traceback) for a given delay.

Figure7.2 shows the “it: difference between the sequence generated using full traceback from the

end of the sentence and the seduence generated using a fixed delay. The top line shows the error

using a delay as in Figure 7.](a). the bottom line shows the error with a fixed delay. but

calculating the traceback to the beginning of the sentence on every occasion. There is Some

advantage to be gained from using as much traceback as possible. Subjective viewings of

sequences generated using this method show that no noticeable discontinuities are introduced.

The delay used in the final system must be determined by the maximum acceptable to the users.

450 Proc.E.O.A. Vol 12 Part10(1990)



 

Proceedings of the Institute of Acoustics

GENERATION OF MOUTHSHAPES FOR A SYNTHETIC TALKLNG HEAD

8. IMPLEMENTATION OF A REAL TIME DEMONSTRATOR

A hardware demonstrator has been produced which is capable of generating synthetic facial
images in real-time. This uses a Texas Instruments TMS 320C30 DSP and an Application
Specific Integrated Circuit (ASIC) developed at BTRL. This image processing hardware is
connected to the speech processing unit via an R5232 serial link.

The speech processing unit is PC based, and uses a 56001 DSP card supplied by Loughborough
Sound Images Ltd. The speech signal is fed into the 56001 via an A—law codec. the speech
parametcrised, vector quantised and then processed by the Viterbi algorithm. The packets
containing the action units are transmitted to the image processing hardware. The PC adds extra
action units to these packets to create realistic movements of the head such as rotations,
translations eyebrow movements etc.

      

  

PC (initialisation + addition of action
units)

monitor

Figure 8.1 Block diagram of the real-time talking head demonstrator.

9. CONCLUSIONS

This method of generating moulhshapes for a pseudo-videophone application produces a realistic
sequence of mouthshapes with a delay which is acceptable for normal conversations, While the
percent corrch mouthshapes chosen is relatively low. the mean-squared difference figures show
that wrong mouthshapes are often close in height and width to that of the correct mouthshape.
Informal demonstrations have shown that the system is generally considered acceptable, at least
for speaker dependent use. For a pseudo videophone application, the next important step is to
make the system speaker independent over telephone lines.

An imponam question is : "How close to real mouthshapes must the generated rnouthshapes be to
make them acceptable to users in a given application?". When the answer to this question is
knewn (and it can be answered only by rigorous subjective testing) it may stimulate funher
research into topics such as finding representations of speech which model niouthshapes better or
learning highervorder statistics in the model.
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