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INTRODUCTION

Parametric and nonlinear effects in structural vibration are often regarded as
uncommon curiosities which manifest themselves only under exceptional
conditions. While it is true that extremes of excitation or response virtually
require that these effects be taken into consideration, they are essentially always
'there' and may, even under what could be regarded as very moderate conditions.
exert a considerable influence on the behaviour of the structure.

The study of parametric vibration of structures is concerned with the behaviour
of structurés in which the parameters — inertia, stiffness and the like — are
regarded as explicit functions of time. it represents a level of linear modelling
one stage more refined than the usual constant coefficient model. The
variation of the parameters in time is usually taken to be small relative to their
average values but in a large class of problems of practical importance, elastic
mechanisms. the dynamics of which mustbe considered as within the realm of
structural dynamics, this is often not the case.

Retention of nonlinear terms to some degree in the modelling of a structure
allows refinement of its predictive capabilities and extends its range of
application (to larger amplitudes for instance). Further. the nonlinear model
may introduce the means of explaining or predicting behavioural phenomena which
were outside the limits of the linear theory. Nonlinear mathematical models of
structures will often include parametric effects i.e. variable coefficients, and
vice-versa so that various features of the two become interwoven.

This paper describes a few of the features of some work by the author and his
colleagues and students on simple one degree of freedom parametrically excited
structures and on nonlinear modal interaction phenomena in multi-degree
structures.

PARAMETRIC INSTABILITY

The solution ofequations with explicit time dependent coefficients may under
certain circumstances exhibit enormous growth from relatively small initial
conditions. Normally only nonlinearities in the equations can limit the growth.
This sort of behaviour is referred to as parametric instability.

For a periodic system, that is a system of linear equations with periodic
coefficients. the solutions are characterised by the monodromy matrix. This
matrix relates the solution matrix of the equations after one period of the
cocffieients to the initial condition matrix. lts eigenvalues are complex and if
any of them has a magnitude greater than unity then the solution will grow each
period, that is it will be unstable. Computing the monodromy matrix and its
eigenvalues can thus be used for establishing the instability zones of a periodic
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system.

Long period inputs

Most work on parametric vibration is concerned with the response to excitation
having a period of the same order as that of the structure. So called main
parametric resonance occurs when the excitation period is about one half the

natural period.

Long period parametric excitation occurs naturally if a structure is subjected to

two or more inputs whose frequencies are not simple multiples of one another.
The overall period can then be very great so that many cycles of oscillation of
the structure occur in it (in theory it can be of indefinite extent as with the

period of (cosat * cosh/Dot). The study of systems under these long period

excitations can also shed light on their behaviour under random parametric

excitation .

One type of problem that has been examined is the stability of the null solution

of the equation

onUa‘i‘w’UscHtHy = O (l)

where {(t) has the form
n

f“) = E CDS{fl(| + to): + cr} (integer r) (2)
r=-n

comprising (2n + 1) unit amplitude sinusoids in the neighbourhood of n, the

frequency spacing in being taken small. The initial phase angles or are fixed
and can be chosen from a rectangular distribution on (0,2w] generated in a
digital computer. This [(t) is a form of Rice noise. For fixed tr, {(t) is a

pseudo-random function with period lit/(an) which is long for u << 1.

Stability maps on the plane of (.’./2a‘.) against c have been produced for this

problem. generally concentrating on the region around (st/2a) = 1. It is found

that the unstable names are for small damping a number of closely neighbouring
areas like fingers which more or less present a common 5 at which instability

begins. For closely spaced inputs a < v the stability boundary is more

complicated but the value of 5 at which instability begins is very approximately

equal to the equivalent value for Gaussian white noise excitation.

Telegraph signal input

The problem in this case is again described by the equation (1) but with {(t)

now in the form of the random telegraph signal which takes only the values 1 1
with certain statistical properties including a specifiable average crossing rate.
Related to this problem is that in which fit) is a pseudo-random signal having

statistical properties like those of the telegraph signal but with a time history

which is periodic.

This problem was tackled numerically by simulating the telegraph switching using

one of the standard algorithms for a random number with a uniform distribution
over an interval. The solution can then be developed in the computer (there is

no need for integration as the problem has piecewise constant coefficients) up to

somc'reasonable' time T. At T the 'pseudo—monodromy' matrix of the solution is

obtained and its eigenvalues cxamined for stability. In doing this we are
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pretending that we have reached the end of one period of a pseudo-random

telegraph signal.

it is found that this process can lead to good estimates of the stability boundary

for the truly random telegraph signal.

MODAL INTERACTION

The normal modes of a linearised constant coefficient structure can be used as

co—ordinates to describe the motion of the same structure when its modelling is

extended to include parametric effects and nonlinearities which may stem from

inertial. elastic or other sources. These nonlinearitles are approximated by

quadratic and cubic terms which are generally small and have little effect on the

behaviour except when certain conditions obtain. in such situations response

estimations using the linear constant coefficient model are quite useless. The

smallneSS of the nonlinear and parametric terms does not prevent them from

having an overwhelming effect on the response in the course of time. These

added terms can be looked on as providing a coupling or an energy interchange

mechanism between the linear modes. This coupling can be dominant in

determining the response of modes which are involved in so-ealled internal

resonance. internal resonance can exist between two or more modes depending

on the degree of nonlinearity admitted into the equations. Thus with quadratic

nonlinearities two modes i and j having linear natural frequencies mi and ..- are

in internal resonance if oi = 2x or three modes i. j and k can be in internal

resonance if Lli = 143 + ck. Higher order nonlinearities such as cubics and above

give more scope for more modes: the general internal resonance can be written

3.1 a be: 4 c. k + . . . = 0 where a, b, c are smallish positive or negative integers.

Under these conditions it may be possible for energy to pass between modes and

the resonant behaviour of the structure will be quite different from any linear

prediction.

Various simple structural systems involving internal resonance have been

examined both analytically and in the laboratory. One of these was basically

a four mode model adjusted to meet the internal resonance condition :4 = m * o1

associated with quadratic inertial nonlincarities. it was found that excitneion

of the model at frequency (44 results initially in a resonant growth of mode 4 but

that this is shortly followed by a development of modes 1 and 3 together, with a

reduction in the response of mode 4. In fact the interaction removes the peak

of the usual steady-state resonant response of mode 4.

With the same model even more complex interaction is possiblct If the external

excitation frequency is taken equal to the sum m2 9 1.14 then modes 2 and 4

respond through the parametric combination resonance mechanism. However

the growth of mode 4 then induces through the interactions just described the

development of modes 1 and 3. Thus all four modes of the structure are

excited by a single external frequency which is not simply related to any one of

the natural frequencies. in the model this type of interaction led to a quasi—

steudy state in which the modal response developed a regular beatt

This more complex interaction between modes is an example of what we have

chosen to refer to as ‘cascading interaction'. In real structures there are very

large numbers of modes and internal resonance conditions will generally be met

or nearly met between many of them. External excitation may then excite mode
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A say which through internal resonance excites modes B and C. Mode C may then

in turn excite modes D and E and so on. so that the modal involvement from a

single frequency excitation may be very extensive. In principle the frequency

cascading effect can be both upward and downward though limited experiments

seem to indicate a preference for modes to pass encrg‘y downwards to lower

frequency modes rather than the reverse.

Similarly the modal response to a broad band form of excitation may be influenced

by these forms of interaction and certain modes or modal groups may gain a

predominance in the response. Certainly in the presence of modal interaction

general concepts concerning modal response such as equi-partition of modal

energies can be applied only with considerable reservation.

The analysis of the problem because of the assumed smallness of the parametric

and nonlinear lerms, can be approached using a perturbation method.

For instance the general form of the equation of motion of the rth mode of a

structure retaining quadratic inertial nonlinearities and linear parametric terms

can be written

2 g (7 — - u . .l . Ipr + mrpr Frcos..ft LIKrjpjcosth + Zrijpipj o mrupipj + turd:er (3)

Summation on the repeated indices i, i only is implied. F1. is the direct forcing

term, nri the parametric term. both at frequency nf, while rm, mri- are the

constant coefficients of the quadratic nonlinearities. The single te m pr

represents an assumed uncoupled modat viscous damping, c is a small parameter.

The solution to equation (1) is taken in the form

pr = Arch) o Ar(t)cos(.‘1rL w ¢r(:)) + [rcosmft + or) 4- :ar(t) + :‘br(t) (4)

The first three terms are the principal part of the solution while the other terms

in powers of .: allow for a perturbation approach. The term Arott) is regarded

as varying only relatively slowly with time as are Artt) and the phase firtt). The

first term is the DC or rectified component. The second term oscillates with

frequency firtror). the rm mode response frequency. unknown at this stage.

The third term is the component of forced response of the mode at the forcmg

frequency. The linear undamped response f1. = Fr/(mz - of) and u; = 0 can

often be assumed for this component as it is usually included in the solution only

for excitation frequencies or reasonably well removed from ordinary resonance.

The assumed solution such as (4) is substituted in the equations of motion and

various simplifications are made followed by separate consideration of the various

powers of s. The equations obtained considering only terms of order a” are

sometimes referred to as the variational equations. Terms which cause

‘resonance' in the first order perturbation equation :‘ are removed from it and

put in with the variational equations. The DC terms and the cos and sin terms

in (nrt 4 ethane considered separately.

The resulting equations are generally simpler in form than the original equations

of motion. Even if they are not analytically tractable computing directly from

them is much faster and more economic. in most cases that have been tried they

seem to model the response pl. obtained by straight numerical integration of the

'full‘ equations (3) tolerably well.
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