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INTRODUCTION

Hidden Markov models (HMMs) form the basis of many current speech recognition systems.
Their advantage is that they provide a formal mathematical framework for modelling the
variabllity In speech signals which is amenable t a set of computationally efficient and
mathematically rigorous algorithms for automatic model parameter reestimation and patiern
classification. However, several propertes of HMMs are inappropriate in the context of speech
pattern modelling; one such property is. the underlying model of state duration in a HMM,
This paper proposes one method of overcoming this problem by extending the HMM to give a
more reallstic durational structure to the model while still retaining its desirable mathematical
properties, Results of isolated—word recognition experiments on digits and on a set of
minimally distinct word pairs are presented,

HIDDEN MARKOV MODELS

A hidden Markov model comprises two related mechanisms; an underlying Markov chain, and
an associated random function for each state in the chain. For the purposes of speech pattern
modelling, the states of the underlying model should be thought of as the ‘target sounds' which
constitute a2 word; hence the state oulput functions model the statistical variation in the speech
pattern, and the underlying Markov process models the temporal structure of the word. The
underlying model i3 assumed to be first~order and finite, so that it is memoryless (i.e the state
of the model at any time 1 is a function only of its state at the time instant ¢t—1 and not of
its past history).

An N-—state hidden Markov model M may be completely specified by :—

1. An N=eleinent initial state probability vector JT whose elements =; are defined by
7 = P (slale 5 at time 1)
2, An NxN transition probability matrix A whose elements a;j are defined by
a,_{ = P (state &; at time ¢+1 | stite 5; at time 1)
3. A set of N multivariate pdfs, b,,...0; ...by. Each b; is a pdf defined on
d—dimensional Euclidean space E4 such that for any vector v in Ed, bi(v) is the
probability that v is generated by state s;.

For the purposes of (his paper, the output function b; for each state in the chain is a
multivariate Gaussian pdf parameterised by a mean vector my; (representing the short—term
spectrum) and diagonal covariance maitrix v;. The model must be entered through state 1 and
left at state N.

Maximum likelihood clagsification wsing hidden Markov models.

Suppose that O = (0,,...0,,...07) is a sequence of 7 vectors in EJ representing an unknown
utterance.  For the present paper, O; should be thought of as a vector representing the
short—term spectrum at time f during the utterance. The HMM, M, can only generate O via
a state sequence o = ofl)... o(T) of length T (i.e. for each 1, af{t)=s; for some i=1 10 N).
The joint probability of O and o conditdoned on M is

T
POa 1 B) = b1y O ag(e-1)a(e)Po(r)(Oc)
The probability P ( O | M ) of O given M is then
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P(OIN)-EP(O.GIM)
where the summation is over all slate sequences o of'lenglh T

Model Parameter Reestimation.

The first problem to be addressed when using HMMs for speech recognition is the creation of
a model for each word in the vocabulary. The method used most frequently is to make an
initial estimate of the model and improve it by an iterative procedure. Baum et al. [1], and
Liporace [2] have shown how, given a HMM and a set of examples of the word, a new model
can be derived such that the likelihood of the set of training words conditioned on the new
model Is greater than or equal 1o their likelihood conditioned on the original model. Repeated
application of this process gives a hill~climbing algorithm which locally maximises P{ O | M ).
The reestimation formulae used at each stage In the process are given below:—

L P (0,0 M)

ay - oSy g (1)
IP (0,0 M)
ﬂ!Sl
£ I P(0O0cIMH)O
my - t oeS(e) (2)
IP{(0,0 | N)
eS|
I P(OcIN O, - ) (0, -m)*
5 - L “sl(t)( ) (Op-mp){0;-my) 3
IP(O00 | N)
oedSy

where S,-j = {o: o(t)=41, a(:+1)=.rj for some 1}, §; = {5 o{t)=5 for some 1}
and * denotes matrix transposition.

Computationally efficient algorithms exist for the evaluation of the reestimation formulae (1) 10
(3) [3]. In practice, extensions of these formulae which are able to accommodate several
examples of a given word for parameter estimation are used.

DURATIONAL MODELLING IN MARKOV MODELS

The underlying model of state duration in 8 Markov chaln is a geometric process. If the
probability of a transition from a stale to itself is @, then the probability g¢) of remaining in
that state for ¢ time intervals is given by the geomerric pdf

g(t) = at-1l¢1-a) t=1,2,... (4)

and the expected duration of the state is (1—a)~'. This is an inappropriate model for the
temporal variation in speech segments, as g(f) decreases with increasing I it is more likely that
a segment of a word (as represented by a state in a HMM) will have a high probability of
having some target duration, with lower probabilities assigned to longer and shorter durations
[4].

One method of obtalning more realistic durational structures from Markov models is explicilly to
amsoclate a durational pdf with each state in the chain, The resulting model is known as a
Hidden Semi—Markov model {(HSMM). It has been shown (hal the standard HMM parameler
reestimation and word classification techniques (as outlined above) can be extended to these
HSMMs for certain classes of duratlonal pdfs, including the Poisson pdf [5], [6], and the F—pdf
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[7]. However, the method is computationally expensive.

The approach considered here is to identify each node in the underlying Markov chain with a
network of states or sudb—HMM with a single state owtput pdf. The motivation behind this
approach is the fact that a rich family of pdfs can be obtained as the overall durational pdf of
a series—parallel network of states in a Markov model. This method has previously been
investigated by Mergel and Ney [8]. ’ '

Theoretical Basis for the use of Sub—HMMSs

Cox [9] has shown that a durational pdf with a rational Laplace transform may be represented
by a series—parallel network of exponential distributions whose lifelimes may be complex. The
corresponding result for discrete time processes is that a duration pdf with rational z—transform
may be represented as a. serles—parallel network of geomelric processes. The proof of this
result relies on a particular decomposition’' by partial fractions of the z=transform of ke pdf;
the parameters of Lhe geomeuic pdfs in the equivalent network are derived from the roots of
the polynomials which form the numerator and denominator of this z—transform. In general,
these roots may be complex, and this gives rise to complex parameters in the corresponding
geometric pdfs; the implications of this for speech signal modelling are not clear. So, in order
to exploit Cox's results, further restrictions must be placed on the class of pdfs used to ensure
that the parameters of the resulting geometric pdfs lie between 0 and 1; the general solution to
this problem is unknown.

In this paper, three classes of series—parallel stale configurations are considered :—

A A series sub—HMM with tied self—transition probabilities.
B. A seres sub—HMM with self—transitions and exit transitions.
C. A two—state recursive sub—HMM,

Type A. Figure 1 shows the topology of a type A sub—HMM;.note that a;;=a (0.8 here) for
all i.
Fig 1, 08 08 03 08 08 08

02~ 02~ 02~02 ~0.2

The overall durational pdf a of such a network is the convolution of the {geometric) pdfs of
the N individual states [10]. Although the pdfs thus obtalned seem potentially usefut, they are
limited by the fact that the minimum duration of each state in the chain is 1, thus giving a
minimum possible duration In the network of N. This can be overcome by introducing the
concept of states with minimum duration 0.

The durational pdf of such a state is the modified geoi-nelrlc pdf, defined by:—

8o(t) = (1-a)at t=0,1,2... (5)
with expected value ¥, = a(1-a)™?
The z—transform of the modified geometric pdf is given by:—

- 1-

OB = (6)
Now consider an N-state type A sub—HMM, with minimum substate duration zero; the

z—ransform of the durational pdf of such a model is the product of the z—transforms of the
modified geometric pdfs, i.e. ;— :
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W .
Rol2) = faayN - N

This I8 the z—transform of a modified negative binomial pdf. Hence, by the uniqueness
property of the z—transform, the durational pdf for a series of states with minimum duration 0
is the modified negative binomial pdf n;. The mean and varlance of this distribution are N
times those of the modified geometrie, i.e.

= Na Na?

N ¢ F)) 4ny = ey
Figures 2 and 3 illustrate the behaviour of the modified negative binomial distribution under
certain constraints.

The modified negative binomial pdf has previously been used by Crystal and House [4], whe
investigated phoneme duration in American English. They found that such a pdf fitted the
observed statistics very well. A further consideration is the fact that if the number of states N
in the model Is increased while holding the mean, Na/{1-—a), constant, the modified negative
binomial pdf tends 10 a Poisson pdf (see fig. 2). This provides a link with the work
described in [5) and [6) on HSMMs with Poisson state duration pdfs.

Fig. 2. Fig. 3.

Modiled negative binomial distribution with Modified negative binomial distribution
constant mean, 20, and 1,2,4.8,16,32,64 states, with conslant number of states, 32, &
compared with Poisson distribution (solid line). means 10,20,30,40,50,60,70 & 80,

States with minimum duration 0 are equivalent 1o the null trensitions described in [11]. This
property can easily be accommodated In the standard HMM parameter reestimation and paltern
recognitlon algorithms.

Type B. Sub—HMMs of type B are standard HMMs in that the minimum duration of each
substate is 1 and substate duration is modelled by a geometric pdf. The problem of increasing
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minimum duration as the number of states in the sub—HMM increases is solved by allowing
transitions from each substate to the final substate. In this model, the substate transition
probabilities are not tied together during reestimation. Intvitively, in an N—state type B model
the N exit transitions characlerise the probabilities of durations 1 to N, and the self—1transitions
smooth the resuling pdf and extend it to infinity. Fig. 4 shows the topology and a typical
durational pdf for a sub—HMM of type B.

Type C. In this class of sub-~HMM each substate has minimum duration 1, and substate
transition probabilities are reestimated independently. The potentially useful durational pdfs
which arise with this type of model are a consequence of the recursive nature of the underlying
sub—HMM topology. Figure 5 shows the topology and a typlcal durational pdf of a type C
sub—HMM. .

Fig. 4. Model B. Fig. §. Model C.

P(1) | P() ]

L L h ]
‘a F) ] 1) ee f L] 29 L)

Extenzion of Baum—Welch Algorithms

It is clear that some adaptations must be made to the standard Baum-—Welch parameter
reestimation algorithm to include the constraint that all the states in a sub—HMM must have
identical output distribulions, and, in the case of the type A sub—HMM with modified negative
binomial pdf, the same transition probability,. It can be shown that a ‘weighted mean*
approach, as given by the formulac (8), (9) and (10) below, is the appropriate method here.
These formulae are clearly extensions of the standard expressions (see (1) and (2)).

Suppose that each state s; (henceforth referred 10 as & macrostare) in the N—state HMM M is
expanded into an s—state sub—HMM Mj {i=1,...N). This results In _an expanded model M'
with Ns states. Let I; denote the index of the first state in M® which belongs to the
sub—HMM M, so that [;=({i—1)2 +1 (i=1,..N}.

In this case the modified reestmation formulae l‘or the mean #i; and covariance matrix ¥; of
each state k in the /" sub—HMM are given by :

I144-1
E L P (00| M) O
By - ¢ =1 ﬂsjm (8)
[jgy-1
jgll GESJ P {001 M)
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T o P (001 M) (O (OB
N -m -m
v - ¢ jly aesyr) AR I (9)
]l+1'1

JE“ agsj P (0o I M)

and, in the case of sub—HMMs of class A, the reestimation formula for the self—transition
probabitity for each state k in the i'® sub—HMM is given by:— .

Hgy-l
I £ P(O0IM)
Tk - =1y aeSjj (10)
Ti4,-1

Ery olsy PO

EXPERIMENTS ON SPEECH

Isolated Digit Recognition Experiments
The existence of a database of isolated digits (40 examples of each, spoken by each of 40
speakers {12]), added to the fact that digits would be widely used in potential applications of
. automatic speech recognition, was a prime motlvating factor in the choice of vocabulary for
these experiments. Results from a large—scale set of experiments on-HMMs [13] using this
database aided in the choice of parameters for the experiments; 10 examples of each word
were used for training, and the models had 5— and 10— macrostates. Twenty of the
speakers were selected; the three types of sub—HMM detailed carlier were used, and the
number of states in the sub—HMMs was varied from 1 to 6,

Results,

Fig. 6. Percentage error rale vs. number of substates for digit recognition experiments.
— = type A sub—HMM, 0O = S-—macrostate model;

=== = type B sub—HMM; A = 10-macrostate model.

i 2 3 Y 5 =]
NUMBER DOF SUBSTATES
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The resulls are summarised in figure 6. It may be seen that durational modelling does give a
slight improvement in recognition accuracy for digits; this is most pronounced for type B
sub—HMMs, where increasing the number of states gives a decrease in error rate from 3% for
standard HMMs to 2.4% for 6—state sub—HMMs, Type C sub—HMMs give an error: rate
almost identical to 2—substate type B models, implying that the recursive property of the modet
has no particular advantage. Increasing the number of states in the sub—HMM did not have
as significant an effect on recognition performance as increasing the number of macrostates in
the model; this implies that the acoustic differences between digils are more significant than the
durational differences.

Experiments on Minimally Distinct Word Palrs

The word pairs given below all have the property that their durational characleristics provide an
important ¢ue for discrimination [14). For example, the woicing of the final consonant in
league' extends the vowel duration over that in ‘'leek’; the initial fricative in 'seen* is longer
than that in *teen*, although they are spectrally very similar.

chip/ship; cloze/close; fivesfife; hard/heart; heard/hurt; league/lcek; riderfuriter;
robe/rope; seenfteen; wand/want. :

These 11 word pairs were used to test the performance of the modelllng strategy; sub—HMM
types A and B were used, with an B-~macrostale underlying model. Ten examples of each
word were used for training and ten for recognition.

Results.
The resuls of these experiments are summarised in table 1; it is clear that durational modelling
can improve recognition performance in this kind of task.

Table 1.  Recognition errors in minimal pairs.
Type A HMM Type B HMM
No. of substates No. of substates
1 4 8 ‘ 1 4
otal Errors (%) [15.9 16.8 16.4 15.5 5.0

Sub—HMM type A gives no advantage aver conventional HMMSs; this is an unexpected result,
in view of the relationship between the modified negative binomial and the Poisson pdfs, since
experiments on the same data have shown that HSMMs with Poisson durational pdfs can
achieve a 20% reduction in error rate [15].

Model B shows a significant decrease in error rate, similar to the improvement oblained using
HSMMs with discrete duration pdfs [15). This result is duc to the ability of the type B
topology to specify a dghtly—limited durational pdf and hence to give more significance to
durational differences.

CONCLUSIONS

The results presented here show that the performance of HMMs in speech recognition can be
significantly improved by using appropriate state duration models. The relative simplicity and
computational c¢heapness of the durational modelling technique presented here make it an
attractive alternative to the use of semi—Markov models. The most effective type of
sub—HMM appears to be the type B topology with self—transitions and exit transitions.
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