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INTRODUCTION

Hidden Markov models (HMMs) form the basis of many current speech recognition systems.
Their advantage is that they provide a formal mathematical framework for modelling the
variability In speech signals which is amenable to a set of computationally efficient and
mathematically rigorous algorithm for automatic model parameter reestimation and pattern
clasiflcatlon. However. several properties of HMMs are inappropriate in the context of speech
pattern modelling; one such property is the underlying model of state duration in a HMM.
This paper proposes one method of overcoming this problem by extending the HMM to give a
more realistic durational structure to the model while still retaining its desirable mathematical
properties. Results of isolated—word recognition experiments on digits and on a set of
minimally distinct word pairs are presented.

HIDDEN MARKOV MODELS

A hidden Markov model comprises two related mechanisms; an underlying Markov chain. and
an associated random function for each state in the chain. For the purposes of speech pattern
modelling. the states of the underlying model should be thought of as the 'target sounds‘ which
constitute a word; hence the state output functions model the statistical variation in the speech
pattern. and the underlying Markov process models the temporal structure of the word. The
underlying model is assumed to be first-order and finite. so that it is mentoryless (Le the state
of the model at any time I is a function only of its state at the time instant 1—1 and not of
its past history).

An N—state hidden Markov model M may be completely specified by :-

1. An N-elentent initial state probability vector ll whose elements ll’“ are defined by
in = P (state :1 at time t)

2. An NxN transition probability matrix A whose elements a”- are defined by
a = P (state 4' at time t+l | state 3, at time I)

3. A set 0/ N multivariate pdfs, bl....b; ...b~. Each (1‘- is a pdf defined on
d-dimensional Euclidean space 5‘ such tha't for any vector v in Ed. bl-(v) is the
probability that V is generated by state :5.

For the purposes of this paper. the output function b; for each state in the chain is a
multivariate Gausian pdf parameterised by a mean vector ntl- (representing the short—term
spectrum) and diagonal covariance matrix vi. The model must be entered through state i and
left at state N.

Maximum likelihood classification using hidden Markov models.
Suppose that O = (0‘....0.....OT) is a sequence of T vectors in Ed representing an unknown
utterance. For the present paper, 0. should be thought of as a vector representing the
short-term spectrum at time t during the utterance. The HMM. M, can only generate 0 via
a state sequence tr = 0(1)... 0(1‘) of length T (i.e. for each I, a(t)=r‘- for some i=1 to N).
The joint probability of O and a conditioned on M Is

T
P ( 0.0 I It ) - baa)(olzflzaau-1)a‘(t)bv(t)(°l)

The probability P ( 0 l M ) of 0 given M is then
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P(O|N)-§P(O.vlfl)

where the summation is over all state sequences :7 oiilcngth T:

Model Parameter Reestimation.
The first problem to be addressed when using HMMs for speech recognition is the creation 0! I
I model for each word in the vocabulary. The method used most frequently is to make an
initial estimate of the model and improve it by an iterative procedure. Baum et ai. [I]. and
Liporace [2] have shown how. given a HMM and a set of examples of the word. a new model
can be derived such that the likelihood of the set of training words conditioned on the new
model is greater than or equal to their likelihood conditioned on the original model. Repeated
application of th'u process gives a hill—climbing algorithm which locally maximises P( O | M ).
The reestimation formulae used at each stage in the process are given below:—

IZ P(0,a|ll)
a” _ INS” (1)

X P (0.17 I M)
6151

I: I P (0.0 I H ) 0
fi‘ _ t desl(l) ‘ (2)

l: P (o,a t tt)
«11$.

2 Z P(0.d|N)(0-')(o-'*
Vt - ‘ "51“) ‘m' In”) (3)

IIP(O,u|ll)
ass.

where Si] = (:7: 0(1):”. o(i+i)=.rj for some t). S; = (a: 11(1): t,- for some t)

and ‘ denotes matrix transposition.

Computationally efficient algorithm exist for the evaluation of the reestimation formulae (1) to

(3) [3]. In practice. extensions of these formulae which are able to accommodate several

examples of a given word for parameter estimation are used.

DUM‘I'IONAL MODELLING IN MARKOV MODEL?

The underlying model of state duration in a Markov chain is a geometric process. I! the

probability of a transition from a state to itself is a, then the probability 3(1) of remaining in

that state for 1 time intervals is given by the geometric pdl

at!) - n"1(1-a) t-1.2,... (4)

and the expected duration of the state is (1-2)". This is an inappropriate model for the

temporal variation In speech segments. as 5(1) decreases with increasing 1; it is more lilter that

a segment of a word (as represented by a state in a HMM) will have a high probability of

having some target duration. with lower probabilities assigned to longer and shorter durations

[4].
One method of obtaining more realistic durational structures from Markov models is explicitly to

associate a durationai pdf with each state in the chain. The resulting model is known as a

Hidden Semi—Markov model (HSMM). It has been shown that the standard HMM parameter

reestimation and word classification techniques (as outlined above) can be extended to these

HSMMI for certain classes of durational pdls. including the Poisson pd! [5]. [6], and the F-pdt‘
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[7]. However. the method is computationally expensive.

The approach considered here is to identify each node in the underlying Markov chain with a
network of states or sub-HMM with a single state output pdf. The motivation behind this
approach is the fact that a rich family of pdf: can be obtained as the overall durational pdf of
a series—parallel network of states in a Markov model. This method has previously been
investigated by Mergel and Ney [8].

Theoretical Basis for the use of Sub-HMMs

Cox [9] has shown that a durational pdf with a rational Laplace transform may be represented
by a series-parallel network of exponential distributions whose lifetimes may be complex. The
corresponding result for discrete time processes Is that a duration pdf with rational z-mtns/orm
may be represented as a,serles—parallel network of geometric processes. The proof of this
result relies on a particular decomposition by partial fractions of the z-transform of the pdf;
the parameters of the geometric pdf: in the equivalent network are derived from the roots of
the polynomials which form the numerator and denominator of this z-transform. In general.
these roots may be complex. and this gives rise to complex parameters in the corresponding
geometric pdfs; the implications of this for speech signal modelling are not clear. 50. in order
to exploit Cox's results, further restrictions must be placed on the class of pdfs used to ensure
that the parameters of the resulting geometric pdfs lie between 0 and t; the general solution to
this problem is unknown.

in this paper. three classes of series-parallel state configurations are considered :-

A. A series sub-HMM with tied self-transition probabilities.
B. A series sub-HMM with self—transitions and exit transitions.
C. A two-state recursive sub-HMM.

Tm A. Figure 1 show the topology of a type A sub—HMM; note that au=u (0.8 here) for
all I.

n; 1, 08 0.0 03 0.3 0.3 08

0202020202

The overall durational pdf n of such a network is the convolution of the (geometric) pdfs oi
the N individual states [10]. Although the pdfs ""5 obtained seem potentially useful, they are
limited by the fact that the minimum duration of each state in the chain is 1. thus giving a
minimum posible duration in the network of N. This can be overcome by introducing the
concept of states with minimum duration 0.

The durational pdf of such a state is the modified geometric pdf, defined by:—

5.0) - (l-u)aI t-0.1.2... (5)

with expected value in = :10 -a)_'
The z-transform of the modified geometric pdf is given by:-

Eutz) - (6)
Now consider an N~state type A sub-HMM. with minimum substate duration zero: the
z-transform of the durational pdf of such a model is the product of the z-transl‘orms of the
modified geometric pdfs. i.e. :-
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_ N
Rom - fifiw . (7)

This is the z-tranalorm o! a modified negnllve binomial pdf. Hence. by the uniqueness
property ol the z-tnnsforrn. the durational pdl' for a series of states with minimum duration 0
II the modified negative binomial pdl nu. The mean and variance of this distribution are N
times those of the modified geometric. Le.

_. Nu llnI

"n ' its? 4"» "tr-“m
Figures 2 and 3 illustrate the behaviour of the modified negative binomial distribution under
certain constraints.

The modified negative binomial pdf has previously been used by Crystal and House [4]. who
investigated phoneme duration in American English. They found that such a pdf fitted the
observed statistics very well. A further consideration is the fact that if the number of states N
In the model Lt Increased while holding the mean, Na/ (i-n). constant, the modified negative
binomial pdt' tends to a Poisson pdf (see fig. 2). This provides a link with the work
described in [5] and [6] on HSMMs with Poisson state duration pdl's.

 

Fig. 2. Fig. 3.
Modified negative binomial distribution with Modified negative binomial distribution
constant mean, 20. and l.2,4,8.lé,32.64 states, with constant number at states. 31, &
compared with Poisson distribution (solid line). means 10.20.30.40.§0,60.70 t! 80.

 

States with minimum duration 0 are equivalent to the null Intuition: described in [H]. This
property can easily be accommodated in the standard HMM parameter reestimation and pattern
recognition algorithms.

TE 3. Sub-HMM: 0! type B are standard HMMs in that the minimum duration of each
lubstate is l and aubstate duration in modelled by a geometric pdf. The problem of increasing
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minimum duration as the number of states in the sub-HMM increases is solved by allowing
transitions from each substate to the final substate. In this model, the substate transition
probabilities are not tied together during reestimalion. intuitively. in an N—state type 3 model
the N exit transitions characterise the probabilities of durations l to N, and the self-transitions
smooth the resulting pdf and extend it to Infinity. Fig. 4 shows the topology and a typical
durational pdf for a sub—HMM of type 3.

TM C. in this class of sub-HMM each substate has minimum duration 1, and substate
transition probabilities are reestimuted independently. The potentially useful durational pdfs
which arise with this type of model are a consequence of the recursive nature of the underlying
sub-HMM topology. Figure 5 shows the topology and a typical durational pdf of a type C
sub-HMM.

Fig. 4. Model B. Fig. 5. Model C.

P(r)

    
I so so an n l e so u u a- 1

Extension of Baum-Welch Algorithms
it is clear that some adaptations must be made to the standard Baum-Welch parameter
reestimation algorithm to include the constraint that all the states in a sub-HMM must have
identical output distribulions, and. in the case of the type A sub-HMM with modified negative
binomial pdf. the same transition probability. it can be shown that a 'weighted mean'
approach, as given by the formulae (8). (9) and (10) below, is the appropriate method here.
These formulae are clearly extensions of the standard expressions (see (1) and (2)),

Suppose that each state}; (henceforth referred to as a macrosmle) in the N-state HMM M is
expanded into an s—state sub-HMM M. (i=1....N). This results in an expanded model M.
with N: states. Let It denote the index of the first state in M. v/hlch belongs to the
sub-HMM Ml. so that l;=(l-l)s +1 (l=l....N).

In this case the modified reestlmation formulae for the mean :71.- and covariance matrix 7, of
each state k in the I'm tub-HMM are given by :-

lit-t4
l: E X P (0.0 I N) 0;

Yak - t 1-“ aesin) (g)

lit-1‘1

15. as, P <°-v I H)
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1In"1
x z z r<0.aiu)(0-E)(o-‘)*vk _ t J-H mslm »‘ k ‘mk <9) .
ll+|'1
1;“ £51 P (0.11 I It)

and. In the case or sub—HMMs of class A. the reestimation formula for- the self-transition

probability for each state I: in the 1"“ sub-HMM is given by:- -

Il+|'1
_ z z r (04 I u )
an - 1-11 “5” (to)

'l-n'l
fill "ESJ P (Our I It)

EXPERIMENTS ON SPEECH

Isolated Digit Recognition ExEriments
The existence of a database of isolated digits (40 examples of each, spoken by each of 40

speakers [12]). added to the fact that digiu would be widely used in potential applications of

. automtlc Ipeech recognition. was I prime motivating factor in the choice of vocabulary for

these experiments. Resqu from I large-scale set of experiments on HMMs [13] using this

datahase aided in the choice of parameters for the experiments; 10 examples of each word

were used for trainlng. end the model: had 5- and 10- mlcrostates. Twenty of the

speakers were selected: the three types of sub—HMM detailed earlier were used. and the

number of states in the sub-HMMs was varied from 1 to 6.

Results.
Fig. 6. Percentage error rate vs. number of substates l'or digit recognition experiments.

—- = type A sub-HMM‘. D = S-mucrostate model;

---- = type B nub-HMM; A = 10-mcrostate model.
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The results are summarised In figure 6. It may be seen that durational modelling does give a
slight Improvement In recognition accuracy for digits: this is most pronounced for type B
sub-HMMs. where Increasing the number of states gives a decrease in error rate from 3% for
standard HMMa to 2.4% for 6—state sub-HMMs. Type C sub-HMMs give an error‘rate
almost Identical to 2-suhstate type B models, lmplying that the recursive property of the model
has no particular advantage. Increasing the number of states in the sub—HMM did not have
as 'significant In effect on recognition performance_as increasing the number of macrostates in
the model; this lmpliu that the acoustic differences between digits are more significant than the
durational differences.

ExErlments on Minimally Distinct Word Pairs
The word pairs given below all have the property that their durational characteristics provide an
Important cue for discrimination [14]. For example. the voicing of the final consonant in
'league' extends the vowel duration over that In 'leek'; the initial fricative in 'seen' Is longer
than that In 'teen', although they are spectrally very similar.

chlplshlp; close/close; five/fife; hard/heart: heard/hurt; league/leek; rider/writer;
robe/rope: seen/teen: wand/want.

These 11 word pairs were used to test the performance of the modelling strategy: sub-HMM
types A and B were used. with an B‘macrostate underlying model. Ten examples of each
word were used for training and ten for recognition.

Results.
The results of these experiments are summarised In table I: it is clear that durational modelling
can improve recognition performance In this kind of task.

Table 1. Recognition errors in minimal pairs.

  

 
   
  
  

     
    

  
  
  
   

Type A HMM
No. of substatea No. or substates

I b 8 1 h

Sub-HMM type A gives no advantage over conventional HMMs; this is an unexpected result,
in view of the relationship between the modified negative binomial and the Pomon pdfs, since
experiments on the same data have shown that HSMMs with Poisson durational pdfs can
achieve a 20% reduction in error rate [15].

Type 3 “MM

 

Model B shows a significant decrease in error rate. similar to the improvement obtained using
HSMMs with discrete duration pdfs [IS]. This result is due to the ability of the type B
topology to specify a tightly-limited durational pdf and hence to give more significance to
durational differences.

CONCLUSIONS

The results presented here show that the performance of HMMs in speech recognition can be
significantly Improved by using appropriate state duration models. The relative simplicity and
computational cheapnesa of the durational modelling technique presented here make It an
attractive alternative to the use of semi-Markov models. The most effective type of
wb.—HMM appears to be the type B topology with self-transitions and exit transitions.
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