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1. INTRODUCTION

A problem of interest in underwater acoustics is the pulse propagation throu h a randomly
inhomogeneous waveguide. From theoretical point of view the analysis 0 this problem
reduces to evaluating the mutual coherence function (MCF) of frequency (see, e.q.[l]).
Previous research examing the behaviour of the MCF in a fluctuatin ocean has been carried
out in a ray-oriented approach using the path-integral formalism [2 .

This report investigates the MCF as a function of separations in time, space and frequency
in a random ocean in the framework of coupled mode theory which is more suitable for
the important case of low—frequency and long-range propagation. We formulated the matrix
transport equation for MCF in terms of the modal structure of a sound pressure field and
presented useful approximate analytical solution of this equation in unsaturated region. The
obtained expression for MCF has been then applied to the derivation of the mean narrowband
pulse shape at the output of the matched filter. The accuracy limit of measurements in the
arrival time of an acoustic pulse caused by medium fluctuations is estimated as well.

2. PROBLEM FORMULATION

Consider two types of oceanic waveguides: the deep sound channel and the upper-sound
channel. Assume that in the first case the sound scattering is caused mainly by volume
fluctuations in the index of refraction p(r'-‘,z,t), where F = (:r,y) is the horizontal two-
dimensional position vector, 2 is the vertical coordinate and t is the time. In the second

channel the sound scattering occurs on the statistically rough and acoustically soft boundary
2 = ((F,t). Both [l and C are assumed to be random. zeroomean Gaussian fields, and are
characterized by the space - time correlation functions 3,07, 21,22,1‘) and Edi, 7').

Let there be a nondirectional acoustic source located at coordinates (0,'zo) and emitting
a narrowband signal of the form: g(t) = e"“’°‘5(t). Acoustic radiation transmitted
through a medium with random fluctuations is registered by correlation receiver (matched
filter) located at coordinates (F,z). In the subsequent analysis we shall assume that the
oceanic inhomogeneities are large-scale, the Rayleigh roughness parameter is small and the
characteristic frequencies of the spectra B" and Bc are small compared with carrier frequency
wg. Throu hout the report all numerical calculations of the primar correlation quantities
of a pulse signal will be performed for summer and winter soun — speed profiles from
the North-West Pacific at latitude 45° N (Fig.1) and assuming the Garrett-Munk (GM)
spectrum for B" and the Pierson—Moskowitz spectrum for 3‘.
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Fig.1 Upper parts of the sound—speed profiles from
1,4: the North—West Pacific. The profiles are: summer

(curve 1) and winter (curve 2).

1.0

I. In

The acoustic pressure field in a random oceanic waveguide p(r"‘,z,t) can be formally
represented by

on I M(w)
pow) = mdw e-W‘gw) Z paw.» soup-w) (1)

Here 9(a)) = 2L" If; dt e‘“’g(t) is the frequency spectrum of the transmitted pulse, <p,.(z, 1.))

denotes the n-th vertical eigenfunction of a regular channel associated with the eigenvalue

nflw); M is the number of propagating modes. The modal amplitudes p,.(F,w,t) are
governed by the set of coupled wave equations

M(w)

(At Hi)». =son(zo)6(r‘) - 2 WWW)?“ (2)
"=1

where Vnm(1"’,w, t) is the matrix coupling coefficient (depending on t as aparameter) defined
according to:

2k2pnm(1‘-’,w,t) - for volume inhomogeneities;

Vnm(F,w,t) =

WWfi—Wflfiwfi) - for irregular surface.

Here pm". is given by: p"... = fl)” dz no(z);r(r"',z,w,t)go,.(z,w)<pm(z,w), where H is the

ocean depth, no(z) is the regular part of the refractive index.

The important correlation properties of a pulsed wave that has transversed a random medium

are described by the second moment of the acoustic pressure field
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Bp(771,21,txs Fzflzitz) =< P(F1a21,tl)P'(F2y22at2) >-

The brackets < . > denote averaging over the ensemble of random p or ( fields.

In multimode waveguide by the use of the representation (1) we have for B,

m N

3147141,“; fiflmtz) =/ dwl/ dwz 9(w1)g*(w2) 1" EIP(—iw1t1 + iwztz). (3)
—ao -oo

where 1"(F1, 21,t1,w1; F2, zg,t2,w2) is the two-frequency coherence function defined as.

r(a,zl,t1,w1; F2,zz,t2,w2) = Zrmu,2)son(zt,w1)spm(zg,wz), (4)
n m

The labels 1 and 2 refer to two different horizontal position points, times and frequencies.

Thus, the problem offinding a result for B in a waveguide channel now reduces to evaluating
the two-frequency cross-modal mutual co erence functions I‘mn .

3. BEHAVIOUR OF THE TWO-FREQUENCY COHERENCE FUNCTIONS
IN A RANDOM OCEANIC WAVEGUIDE

From the original stochastic Eqs.(2) the conventional transport equation for the cross-modal

coherence functions I‘,.m taken at two horizontal posrtion points Fl 2 (1,311), F2 = (1,112)

in the same a: plane, two different times and frequencies can be derived with the forward-
scattering approximation and has the form [3]:

a? 1626 . . + 62 z _ _
5; + “(fir-(“11) - Km(w2)) - lénmapaR - 55”... (5;; + 2513;)1an012) —

 

_ _%(an(w1) +a,,,(w,))r,..,.(1,2) + Z 'Am'(p,r; w1,u2)r,..,,.,(1,2). (5).
"am,

In writing (5) the following notations are used:

1
P=y1 -y2. R= 5(91 +312): T=t1 —t2;

5:". = (K;1(w1)+ 5.7.1602», 5;". = (M71001) — 530%»;

oo

Amm (Par; ll"I11“"2) =/ d“: < Vnn’(oa01w110)me'(Itpaw27T)> el(s:m_nt'"'l)ta
-oa

nn’
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M
1

Kim = 5097-001) + Km(w2)); (Tr-(w) = 2143301 = 0: T = 0, wyw)’
"=1

The symbol Sign", means the summations over all couples of. modes satisfying the

synchronism condition: nnr(w1) — nm:(w2) = 5,.(w1) — nm(w2).

The system (5) is justified if

an]; >> 1, I >> (1,0,. << man: {A,‘,‘, 11‘},

where I; is the characteristic horizontal correlation length, A" = 21r/(n,.+1 — 1c") is the

cycle length.

In order to describe the behaviour of the second moments the folloing two cases must be

distinguished: n m and n = m. For wave uides having nonequidistant spectrum of the

wavenumbers 5,. w), the contribution to the ouble sum in the right—hand side of (5) in the

case 11 9e 711 gives from the terms 71' = n, m’ = m, and by using a method similar to the

Rytov approximation one can show that

_ ‘Pn(207w1)90m(zotw2) . _ . + &
l‘nm(1,2) — ——————87rznn(w1)flm(w2) exp{z(rcn(w1) nm(w2))x + mum z — Dnm(1,2)},

where

1Dm(1,2)= imam) + mumm-
z °° — m . _ 22' a: —a:’ _ z’

—/; dz'lmdny A?" (my,r,w1,w2) ezp{l§nmn:-—(2$—) +mygp}

and

W

"A,.";"(~y,r,w1,wz)= / dpe-'"vPA;":'<ny,r,wl,w2), naem.
-oo

Applied to a narrowband tramsmitted pulse, a good approximation for the diagonal elements

of the I",m playing the dominant role at long ranges is given by [3]:

; 1_ . . pR
r..,,(1,2) = 8” ; nmltpfnoo) ea:p{zflt,. + m”;— — is)? < r: >}H,.,,.(1,2).

Here 0 = w] — wz, tfl = (z/Vn)(1 + 122/21), where Vn is the group velocity of mode n.

< 1'3 >= id’adwfi/dwfi is its travel-time variance and the Hum-factor can be computed

from
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Hnm(1,2) =1; da ezp{—27ri(n — m)a — \Ilma(1,2)},

where \Ilm..(1,2) =
       

       

      

    

      

  

     

  

  

    
   

 

   
 

‘ ' inzflrTz — x’) x'
"In, ——-_. ,

= a'mz — Z dz'zflm (icy,r)ez"i("l'"')“e:cp[ ” + iVn‘,,.:r:' +21%;

and Viz—m = Va?) _ VII—1’ 222091117): Trwouwo) 6—H“ P-

As an example in Fig.2a we present the numerical results for the normalized magnitude
of I‘m. for several modes as a function of frequency separation 9. The calcnlations have
been carried out for winter sound-speed profile of Fig.1 at f0 = wo/21r = 250 Hz, 20 =
100 m, z = 300 m, a: = 500 km assuming that the main source of signal fluctuations is
fully developed wind waves. The wind speed V was taken 13 m/s. The coherent bandwidth
for separate mode is typically about 2 — 3 Hz.
1-.0'

  Fig.2a Normalized MCF offrequency for winter
sound-speed profile of Fig.1 at different modes:
1 - n=7; 2 - n=12; 3 - n=300.

 

  
0J6 H

A frequency separation. Hz I

The total MCF of frequency (4) demonstrates a quite different behaviour (Fig.2b). It is seen
that the coherent bandwidth is defined by effects of the deterministic multipath and in the
case considered has an order of magnitude of 0.3 Hz. 1

4. MATCHED FILTERING OF A SCATTERED SIGNAL

The matched filtering is one of the widespread procedures of signal processing. The ambiguity
function formed at the output of a receiver system:

my, on) = $1 ff; pm 2, t) S‘(t — 1') e*‘99’dt |, (6)
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Fig.2b Normalized total MCF of

.o' 5 frequency

 

  
0.8

3 |-l

frequency separation, Hz

where ‘r is the time delay and (ID is the Doppler shift, is then employed to determine the

source location. .

We will first be interested in mean square power output < F2(r, SID) >. It is straightforward

to show that for narrowband transmitted pulse the value < F2(T,QD) > is related to the
cross—modal MCF of frequency in the following way:

*XI'(Q’T' — t;m)X:(Qa7-')a

where x.-(Q,‘r) = dt S(t + T/2)S‘(t — 7/2) 8“" is the ambiguity function of the

input signal, ti", = %(t,, +tm), ti”, = t" —tm, and 1",.,,.(1,2) is connected with fnm(1,2)

according to: an(1,2) = fnm(1,2) e“"“"""”"‘.

In many acoustic experiments dealing with a fixed source and a fixed receiver the main

subject of interest is the function E2(1) =< F2030) > which describes the behaviour
of the ensemble - averaged pulse. Figure 3a shows the distribution of the amplitude E(-r)

(normalized to the value E0, defined by E3 = (270‘1 f If; d'rdfl F3030), where F°2(T,SI)

is the processing output in a regular waveguide) versus time delay for the rectangular

transmitted pulse S'(t) = T'l/zrectfl/T) having the pulse width T = 50 ms. The
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theoretical curve in Fig.3a has used calculations of the two—frequency coherence function
for the example given in Fig.2. For comparison in Fig.3b we plot Fo(1-,0)/Eo for the same
sound—speed profile in absense of random surface irregularities.

._ _. ..._s_,c_,‘ ,__y._

 

time delay, 5 - time delay, 5

Fig.3 Normalized signal amplitude at the matched filter output versus time delay in the
presence (a) and absence (b) of sea—surface scattering.

Consider now the energy loss of matched filtering arising from time and frequency
decorrelation of the registered signal. The corresponding power gain reduction is defined
by:

_ <F’( ,9 )>6——101g{%(;—n:r}, dB.

Fi ure 4 illustrates the gain reduction as a function of pulse duration T. Numerical
ca culations were performed for summer and winter sound-speed profiles from Fig.1 at ‘
f0 = 250 Hz, 20 = 100 m, z = 300 m, a: = 500 km under the assumption that the
internal—wave effects dominate in summer conditions (curve 1) and the surface interactions
play predominant role for winter profile (curve 2). Wind speed was taken V = 10 m/s (a)
and V = 13 m/s

5. RANDOM MEASUREMENT ERRORS
IN THE ARRIVAL TIME OF AN ACOUSTIC PULSE

In this section we consider the measurement errors in the arrival time of a pulse arising from
sound scattering effects assuming that the multipath peaks in the correlation integral (6)
are nonresolvable. The corresponding pulse arrival time may be defined to be the centroid:

i1 8 6 Proc. 'I.O.A. Vol'15 Pan 9 (1993) 1
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Fig.4 Energy loss of matched filtering versus
pulse width. The calculations are for summer

profile (curve 1) and for winter profile curve
2). Wind speed was taken V = 10 m s (a)
and V = 13 m/s

 

_ f ff; 1' F2(T,QD) d‘rdQD
‘rmes — F2(T,QD) d‘rdflp '

This estimate fluctuates due to ocean processes and the statistic of interest is the expected

value of the travel - time variance defined as .012. =< 7,2,,“ > —< rm, >2. The useful
form for the rms travel time can be obtalned In the single—scattering region. In the case

of the rectangular pulse having the width much greater than the time delay differences (i.e.

T >> rna:t|t,I — tm|) the result is [4]:

a: = 2 pm [33mm + Exam],

where pnm = (mumm)'1¢i(z)soit(zo)/ 2.. n;’<P3.(z)so?.(zo), and

7r —
Bnm T = _____ BVnm!F,wo,l[ 3V“ I“(1",wo,t+‘r) I

wowo( ) 2nn(wo)nm(wo) ( awn awn )

For the summer profile from the North—West Pacific and GM-spectrum the numerical

estimation of a, at f0 = 250 Hz, 20 == 100 m, z = 300 m, T = 100 s has an order

of magnitude of 02¢; ms (2 is the range in km)‘ For the winter profile and the Pierson—

Moskowitz spectrum for wind speed of V = 10 m/s the value of a, is of order 10‘2fi ms

where x is the range in km.

Proc. I.O.A. Vol 15 Part 9 (1993) 187



 

Proceedings of the Institute of Acoustics

NARROWBAND PULSE PROPAGATION

6. REFERENCES

 

1] A.ISHIMARU, 'Wave Propagation and Scattering in Random Media', Academic Press,

ew-York. 1978
[2] R.DASHEN, S.M.FLATTE & S.A.REYNOLDS, 'Path-integral treatment of acoustic
mutual coherence functions for rays in a sound channel', J. Acoust. Soc. Amer., fl p1716

1985
3] A.2§.SAZONTOV, ’Calculation of the two-frequency mutual coherence function and the

time pulse moments in a random - inhomogeneous ocean', Sov. Phys. Acoust.. fl p526

1989
i4] A.g.SAZONTOV & V.A.FARFEL'. 'Matched filtering ofa narrow-band signal transmitted

93through a random waveguide channel’, Sov. Phys. Acoust.. 13 p591 (19

18 8 Proc. |.O.A. Vol 15 Part 9 (1993)

  


