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1 . INTRODUCTION

Low levels of transmissibility demand soft vibration isolation springs. and
yet soft springs are liable to "wave effect" resonances within the range of
acoustically significant frequencies. Such resonances result in poor
attenuation. or even amplification. of the higher frequency excitations.0ne
solution to the problem is to use a multiple stage isolation system.

Motor cars provide a familiar example of a multiple—stage vibration
isolation system [1]. Pneumatic tyres provide the first stage. Tyres
have their lowest radial resonance at a frequency of about BOHz and this
frequency is dominant in noise transmission from the road. The suspension
springs provide the next stage. and their stiffness is typically a third to
a fifth of that of the tyres. The frequency of their first resonance may be
less than SODHz. A final stage in the isolation of vertical vibrations is
provided by rubber bushings and pads. These also provide a greater
contribution to the attenuation of lateral and longitudinal vibrations than
the suspemion system itself. About 80!: of that sound energy in the
interior of a car which originates from tyre—road interactions is structure-
borne (the remainder being airborne).

Buildings provide another example of the use of multiple stage vibration
isolation systems to limit the problem of structure-borne sound. Sources
of vibration are isolated. for example motors by antivibration mounts and
footfall by carpets. Transmission of vibrations that are excited in the
structure can be reduced by using elastic elements between the structural
elements. For example, floors may be resiliently mounted [2] and layers
of cork or rubber may be used between relatively rigid structural elements
such as brick walls [3].

A particular example of a two-stage isolation system is the use of a rubber
'noise~stop" pad in series with a coil spring mount. It is common practice
to use such a pad when coil springs are used either as car suspensions or
as antivibration mounts for installations in buildings. The object of this
paper is to discuss this system in detail. Preliminary work on this topic
has already been presented. but it was not possible to draw clear
conclusions as there was a puzzling discrepancey between theory and
experiment {4]. The origin of this discrepancy has been identified, and
the theory can now be applied in confidence to a wider rangeof system
than those studied experimentally.
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2 . THE)“

For simplicity. attention will be restricted to translational motion in one
direction. A further simplification is that flexural waves will not be
discussed. In the previous paper [4] the steady-state response of a mass-

spring-mass—spring system [Figure 1) to a sinusoidal excitation was
derived. including the effects of the damping and inertia of the springs.
the treatment is applicable to either shear or longitudinal motion. and
consists of solving the wave equation in a dissipative medium with
appropriate boundary conditions. The vibrational displacement ulx.tl may
be expressed as a sum of waves travelling in the positive x direction (ud
and in the negative x direction (u_):

u(x.t) - Au‘(x,t| o Bu_(x.t) - iej‘m'm‘) ‘ ise“""""‘l (1)

In these expressions, n is the complex wave number given by:

n - Mob/k; (2)

where 9L is the mass per unit length of spring and k ' - k 'ojk ' is the
complex_gtiffneas of unit length of the spring. I! he lo 5 e 1e
6 - tan Ik'L/k'L) of the material is small we may write:

n:

O
I
E

(1-15]?! (3)

where c is the wave speed given by t:2 - kL'loL.

It is apparent from equations (1] and (3) that the amplitude of each wave
is reduced exponentially in the direction in which it travels. It follows
from equations (1) and (2] that the natural logarithm of the ratio of the
amplitudes at positions separated by one wavelength is given by:

It - ammo/2mm H)

To the small loss angle approximation. A is equal to the logarithmic

decrement of the material subjected to free oscillation [5].

 

Figure ; Hass-spring-mass-spring isolation syst

41B Proc.l.O.A. Vol12 Part I (1990)

  



 

Proceedings of the Institute of Acoustics

RUBBER NOISE-STOP PADS

The force exerted by the spring on the surface at x is given by:

Plant) - -kL'(au/ax) (5)

Using appropriate boundary conditions, equation [1) leads to an
expression for the transmissibility T of the system. defined by

Pout

I“in
1- .

(5i

  

This expression involves trigonometric functions of complex numbers. so to
evaluate the expression the following equations are needed:

cosml) - cos(pojq|l. - cos)pi)cosh(q£) - jein(pi)sinh(qt) 7
sinlnl) - sinlptquz - sin1p£)cosh(qi) ¢ jcos)p2)sinh(q2) ‘ )

Unfortunately the signs in these expressions were interchanged in equation(14) of [4]. -

3. COMPARISON OF THNRY AND WEIRD”

Experimental results were given in [4] for the longitudinal
transmissibility of a 6-turn valve return spring (from a car engine. active
length 3 32.5m) in series with pads of rubber [8mm thick) of two different
levels of damping. These results are given in Figure 2 where they are
compared again with the expression for '1' given in [4], but using the
corrected expansions for the trigonometric functions (equation 9 above).

It is apparent that the predicted frequencies at which the coil spring
resonances occur are not precisely in agreemehtwith experiment.
However. the shifts in frequency and attenuaton of the height of the
peaks are predicted with fair accuracy. The peak values were not
attenuated in the theoretical curves given in Figure 4 of [4], this
being the puzzling discrepancy which has been resolved on using the
correct signs in equation (7).

With this renewed confidence in the theory. its predictions will now be
examined in more detail for a wider range of systems.
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4. panmamnca OF A SINGLE SPRING

This section deals with a system like that in Figure l but with only

one spring (parameters k lJoust.) and one mass (m).

For a single spring excited with amplitude uo at x-O and terminated at an

immobile base at x-D. equation (5) becomes:

minus)I

F03) = ’71 upn + M(nx)} ‘5)

Equations (5) and (B) differ from their analogues in [4] because the

direction of the x-axis has been reversed.

If D were zero. equation (a; would reduce to F(x)-(k '/9.)u,. so that

the kehaviogr is that of a simple (ie massless) sprihb of complex

stiffness u -k [1. Figure 3 gives plots of the normalized output force

Hat-9.)“): u,/!t| as a function ofufrequency with tend as a parameter. It

is assume in these plots that k and tans are independent of frequency.

In fact for all rubbers there will be some dependence. and this point will

be considered further in the discussion. '

It is apparent in Figure 3 that the effect of the inertia of a lightly

damped spring is to cause peaks in Phi-9.) at the resonance frequencies

ui/c - Nu where N is an integer. In addition. the output force is greater

between the resonance peaks than that anticipated for a massless spring.

For a more heavily damped spring, the height of the resonance peaks in

Fix-l.) is quickly attenuated as the order of the resonance is increased.

and the value of Phi-9.) between the peaks soon falls below that anticipated

for a masslas spring. These effects of damping arise from the phenomenon

discussed in relation to equation [4).

The inpgt force. F n in equation (6), is dominated at high frequency by the

term mu 1: required to accelerate the mass m situated at x-O. The

other term in equation (5). F t. is just Hat-ii). lrhis means that the

effect of spring inertia on tfig transmissibility of a single spring can be

appreciated from Figure 3, as will beseen on comparing the plots in Figure

3 with the transmissibility plots in Figure I.

S. DERIVATION 0F DESIGN MATIONS FDR NOISE STOP PADS USING FOUR-POLE

PAMHE‘BIS

In this section, the effectiveness of a 'noise-stop' pad. ie. a rubber pad

in series with a lightly damped spring. is discussed in terms of the pad
parameters of stiffness and damping. As shown in Figure 2, the expression
given for the trammissibility of a two-stage system. including effects of

spring inertlas in each stage. is satisfactory. However. the expressions

are rather complicated (equation 18 in [4]) and a simplification would
facilitate design and understanding.
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Snowdon [6.7] has presented a method which reduces analysis of the
performance of antivibration elements connected in series to the
multiplication of 2x2 matrices. An element (or ‘subsystem‘) is
characterized by the matrix

Fe]
ch. (in, = F“; VJ“, V“: Fat“) (9)

“1| Din

 

FM thm Val F5“: 0

where V stands for velocity and the subscripts represent boundary
conditions, for example VD“: - 0 signifies an immobile termination to the
element.

This method is applied to the system illustrated in Figure 1. With the
simplifications that m -0 and n =0 s9 that‘spring 2 may be
characterised just by its stiffkgss k2 - k fill Since there is no
ambiguity the subscripts 1 and 2 will be dropped. The matrix characterizing
this system is then found from the product of the three matrices
corresponding to the mass (m), spring with distributed mass (kL .pUY.) and
msssiess spring (k );

1 Mn wow) Rom»an 1 o

o 1 15mm (030%) 1

(1— sammmo—e’imargflmw j]; mnewwmmna

(10)

émlminfl) + 57:; came) math 1)

where z - fl“: . a quantity whose significance will bediscussed later.
From the defikit’ions (8) and (in it follows that the transmissibility
of the system terminated at an immobile base is given by:

lT-u—
11

(11!

  

Making the simplification that n is real and the approximations that
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Imam/k'|>)l and |zzlmk‘l<<1 appropriate to high frequency and a much

greater than the spring mass, equation (11) becomes
l

 

Te W
I '—'k“) - t

It is apparent from equation (12) that resonance peaks occur at m such that

(12)

  

,
VIMQL'L) *1 - 413)

Thus theresonaqces occur at ut/c values up to "/2 less than NH. the smaller

the value of |k | and the greater the value of u the greater being the

reduction in frequency. The values of T at the peaks are given by:

'T- flu ’k*11 (14'

funk "’ w‘mh’7wa(m,_)

The predictions of equation ‘12) are compared to the full theory (equation

(16) in [4]) in Figure 5. The only difference in the parameters of the

systems for the two theories is that the noise-stop pad is treated as

having distributed mass in the full theory (in fact p - for the case

depicted in Figure 5). This leads to a somewhat greater redaction in the
frequencies of the peak values of T than anticipated from equation [12],

especially for the higher order resonances (see Figure 5). The failure of

equation (12) to predict the primary mass-on-spring resonance is a

consequence of the approximation |u m/k |))l.

5. DISCUSSION“

A comparison of Figures 4 and 5 shows that either damping in the main

spring, or damping in a noise-stop pad in series with an undamped spring.

can attenuate the peaks in T due to wave effects. However. use of a damped

noise-stop has negligible benefit to the level of 1 between the peaks,

whereas damping in the main spring is effective in reducing T at all high

frequencies. Equatign (14) shows that the peak values of T are

proportional to |k I /k'. Thus a soft, lightly damped pad would be as
effective as a stiff, highly damped pad, an example of which is seen in

Figure 2. Figure 5 also shows how use of a highly damped pad and an

intermediate mass m reduces T between the resonance peaks. but the

peaks themselves at; no longer damped, being higher than in the absence of

2.
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Hith the exception of Figure 2, all the predictions are based on stiffness
parameters [k' and k“) which are independent of frequency. In fact from
the theory of visooelasticity, based on the assumptions of linearity and
the superposition principle, it can be shown that if the dynamic shear
modulus G is a function of frequency then it is complex and the real and
imaginary parts are interrelated. Schwarzl & Struik [a] have given an
approximate form for the relationship:

dG'(u)/d(9.nu) ex “Tm”(u)-0.8225d26'(u)/d(lnu)2) (15)

From this is follows that a rubber sprlty with a non-zero value of k' will
have a positive frequency dependence of k‘. The effect of this will be
that the transmissibility of the spring at high frequencies will be worse
than anticipated from the spring properties at low frequency. However, k"
also rises with frequency for rubbery materials, and the beneficial effect
of increasing damping may in part offset the effect of rising lk [. It
would clearly be desirable to apply the theory to a rubber spring with
properties fully characterized as a function of frequency. However, the
conclusions drawn on the basis of the simplified model will remain
qualitatively correct.

Transmissibility of the mass-spring system on an immobile foundation has
been used as a measure of the effectiveness of the isolation. However. if
the foundation were really immobile there would be no need to isolate the
excitation source from it. The impedance Z of the foundation (the inverse
of the mobility) is defined as the force amElitude required to produce a
unit velocity amplitUde. The driving point impedance Z of the system can
be expressed in terms of ZT and the four pole parameter? defined in
equation (9)

= dl 21 + dtz
is “1121- + an (16)

The object of isolation is to reduce the power flow of the structure borne
sound, and the impedance is a useful parameter in this respect. The power
passing across a boundary of point impedance 2 is just ZV , where V is the
velocity at the boundary.

in interesting special case of a mobile foundation is a Semi—infinite rod.
Longitudinal excitation of the termination will cause wave propagation, and
the impedance Z of the rod can be derived as in [3]:

Z-fitlTL-A/E‘; (17)

where A is the cross—sectional area of the rod [considered to be solid),
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E‘r is the complex modulus and o is the density. The "characteristic"

impedance Z‘gf a rod has already been made use of in equation (10). The

quantity /E p is called the characteristic. or acoustic, impedance of

the material.

Cremer E Heckl [3] suggested that a measure of the effectiveness (or rather

lack of it] of an elastic layer as a noise barrier between two relatively

rigid structural elements is the transmission efficiency t. defined as the

fraction of incident power which is transmitted across the layer.

Applying boundary conditions of continuity of force and velocity. it can be

deduced that the fraction l-x of power (propagating as a wave) reflected at

the juncton of a semi—infinite rod with the point of impedance Z8 is:

1
l_-C = ‘1 ‘25 (13)

1. fig,

 

where Z is the characteristic impedance of the long rod. Equations (16).

[17) and (18) allow 1 to be calculated. Cremer E Heckl [3] give the

result for the special case of no damping and equal values of 21 and ZT:

1' = —%T—]‘ 3 —-l-—T “9)
gnaw?) +6 hi1) mfg) 1+(wZ./Zk)

where Z , z and u/c are the characteristic impedance. length and wave

number gespectively of the soft elastic interlayer. The approximate form

neglects the effect of distributed mass in the soft layer (the only parameter

being its stiffness k) and is appropriate for small values of uzlc.

Four parameters. 9 . k‘r {real and imaginary parts) and 2 are needed

to characterise a spring. P 93 these, other parameters such as

characteristic impedance ( k LDL). stiffness (lk L[/1] and damping (tan 6)

may be constructed.

Equation [10) shows that the greater the mismatch in impedances the more

energy is reflected. This may appear to indicate that the crucial

parameter of the soft layer is its characteristic impedance [9]. However,

equation (19) shows that the length of the layer plays a very important

role. as described by the four pole parameters, and in fact. at low

frequency, the crucial parameter is just the stiffness k of the soft layer.

In common with the transmissibility (section 4). the transmission

efficiency is undesirably high at the resonance frequencies of the spring

[wk/c - Nu). Material damping will reduce the peak values of r, just as

with the transmissibility. Although an elastic layer between two

relatively rigid structural elements may be an effective noise barrier. its

function differs somewhat from the noise-stop pad discussed in section 5.

while compliance is the crucial parameter for the former element. the

latter element must havedamping as well as compliance.
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7. CONCLUSIONS

If a spring with low damping is used, a ‘noise-stop pad" can be used in
series with it to cut down the peak values of transmissibility (due to Have
effect resonances) but the level between the peaks is not reduced. The
required properties of the pad are damping and compliance, while density
(or acoustic impedance) plays a secondary role. The overall conclusion is
that a better solution to the problem of spring resonances is to use a
material with inherent damping (eg. rubber) for the spring. This leads to a
reduction in both the height of the peaks and the level of transmissibility
between them.
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Figure 2 Comparison of theory (—) and experiment (...I for

transmissibnity of a coil spring with no pad. a soft low damping

rubber pad (NR) and a stiffer. high damping rubber pad (ENR 50).

Details of the pad properties are given in [1]
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Figure 3 Reduced force (F tAk‘uo) transmitted by a single spring to an
immobile foundatxon. Parameter is tans
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Figure 5 Effect of noise-stop pad [with damping tang on the
transmissibnity of an undamped spring. — Equation 18 of [4],
+. t and - equation (12). For Top #hru. graphs)m2=o.
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