
 

 
 

 
  1 

ON INVARIANT SOLUTIONS TO THE SECOND-ORDER 
EQUATION OF INVISCID GAS FLOW 
Alexander I.Kozlov 
Department of medical and biological physics, Vitebsk State Medical University, 210023, 
Vitebsk, Belarus. 
email: albapasserby@yahoo.com

Exact nonlinear wave equation seemingly first published by S.Goldstein in 1960 is 
used as expression adequately describing flow of inviscid gas. This is a second-order 
nonlinear partial differential equation in acoustic potential. Unfortunately, information 
about exact solutions to this equation is very poor, only different methods of 
approximate solution are proposed. Application of Lie group analysis to the equation 
under consideration is presented in the given communication. Some invariant solutions 
are found in this way. 
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1.     Introduction 

 
Among methods of simplification of solution of complete system of hydrodynamic equations 

one proposed by S.Goldstein [1] stands out against others because for inviscid gas this approach 
leads to the single exact differential equation in acoustic potential. In the three-dimensional case it 
has the following form 
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where  is the acoustic potential,  is the small-signal sound wave velocity, φ 2
0c γ  is the ratio of 

specific heats. 
Equation (1) “is often used in aeroelasticity, and it frequently serves as a starting point for 

perturbation analyses in nonlinear acoustics” [2], but because of its nonlinearity it is not so easy to 
find its analytical solutions. Of course, numerical calculations are indispensable in modeling of 
real gas flow, nevertheless search of exact solutions remains important because they enable to 
make qualitative estimations as well as to develop and to debug modeling software. 

The present report is devoted to application of Lie group approach to search of invariant 
solutions to the equation under consideration. Invariance means here preservation of a form of a 
solution at some changes of spatial coordinate and time. The standard technique allows reduction 
of partial differential equation (PDE) (1) to some ordinary differential equation (ODE) [3] and the 
latter one, as it was shown in the work, can be solved analytically in the case of a perfect inviscid 
gas. This reduction was successfully used for solution of nonlinear problems of acoustics [3], gas 
dynamics [4] as well as of biophysics and signal processing [5]. Further generalizations of Lie’s 
method (by means of nonclassical reduction, for example), based on complementary demand of 
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symmetry of boundary conditions, allows one to broaden number of invariant solutions of 
nonlinear equations [6-7]. 

 
 

2.    Solution 
 

A one-dimensional case is studied here, so Eq. (1) is considered in the next form 
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Lie group approach is based on analysis of behavior of an appropriate differential equation 

under small continuous changes of its variables [3]. S.Lie had stated that this behavior was 
completely determined with a gradient vector, which had components proportional to increments 
of all variables of equation under consideration. So as Eq. (2) includes three variables φ,, xt , the 
corresponding gradient vector has up to three components. Using the standard Lie’s approach, the 
following four operators are obtained in this way. Each of them presents components of one of 
four independent gradient vectors along three possible axes φ,, xt  
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where M  and  are arbitrary constants. Components of differential operators (3) along any 
coordinate  (i.e. coefficients before corresponding derivatives in the latter expressions) 
determine directions of 3D gradient vectors. In order to find invariant solutions to Eq. (2) one 
needs to solve the appropriate first-order partial differential equations as we do it now. 

N
φ,, xt

In the problem under consideration first three operators X1,  X2 and X3 correspond to translations 
of reference point along axes t, x and φ  respectively and these operators allow to find only 
invariant solutions remaining constant along appropriate axes. The only nontrivial transformation 
operator  leads to the next two differential equations 4X
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Depending on relative values of M  and , two subsequent sets of invariants can be deduced 

from Eq. (4). 
N

Case 1) .,0 MsrNM ==⇒=  The first family of invariant solutions to Eq. (2) looks like 
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where  is an unknown function of the first invariant )(λΦ λ . This solution remains constant at 
simultaneous scaling of x  and . If we consider for simplicity t 1=M , then 

 

 (5, a)                                                                  
t
x

=λ                                                                         

 
2  ICSV24, London, 23-27 July 2017 
 



ICSV24, London, 23-27 July 2017 
 

 

 
Substitution of the first of Eq. (5) subject to (5, a) into Eq. (2) reduces the latter one to the next 
second-order ODE in which λ  is the only independent variable 
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Evidently, Eq. (6) can be separated into two ODE. The first of them, 0=Φ ′′ , leads to the trivial 
solution , while from the second one the next couple of solutions follows tBxA 11 +=φ
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where  is the integration constant. Both solutions (7) show similar dependences of acoustic 
velocity and pressure on space and time coordinates, namely 
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Expressions (8) describe acoustic pulses decaying at any point with a lapse of time. 
Case 2)  In this case the first equation of the system (4) leads to another first invariant 

of Eq. (2) in the form of a self-similar expression 
.NM ≠
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When solving the second equation of (4) subject to the first invariant (9), the following 

expression for the second invariant of Eq. (2) can be found 
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We restrict consideration with the case .01,2 =⇒== sNM  Thus 
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Substituting (11) into Eq. (2), one can get the next ODE in the function  )(λΦ
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with  as a new independent variable like previously. This equation can be easily integrated once, 
leading to the following first-order ODE 

λ
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here 1  is the constant of integration. Variable C λ  is real, therefore  always. If 1C = 0, 
solutions (7)-(8) follow from the latter equation. Otherwise, in general case, let we first consider 
the classical monoatomic perfect gas (

01 ≥C

35=γ  ). Then Eq. (13) takes on a much simpler form 
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Considering (14) as quartic algebraic equation in Φ′  one can write its four solutions 
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Both acoustic velocity and acoustic pressure are expressed through partial derivatives of the 

acoustic potential so in one-dimensional geometry one obtains from Eqs. (11) 
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Substituting solutions (15) into Eqs. (16), one obtains four exact analytical expressions for 
acoustic speed and pressure in the monoatomic perfect gas. It can be easily found that these 
solutions also describe monotonically spreading with time pulses. Indeed, absolute values of 
velocity given with Eqs. (15)-(16) asymptotically tend to zero as 21−t  when time tends to infinity, 
while values of pressure vanish even faster according to dependence 23−t . This behavior of 
invariant solutions seems to be owing to the fact that the first summands of Eqs. (10) or (11) after 
substitution into Eq. (2) exclude the second (”wave”) term of the latter equation. This fact shows 
the way of significant simplification of Eq. (2). Indeed, if one tries to find a solution in the form 
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then initial Eq. (2) transforms into the next PDE in ),(~ txφ  
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For a gas with polytropic index 3=γ , the latter equation looks like 
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It is interesting to note that the expression for acoustic speed in Eqs. (16) subject to solutions 

(15) does not contain any elastic parameters of the gas, only integration constant C1 which has 
dimension of coefficient of diffusion. 

For diatomic and polyatomic classical perfect gases (as well as for real gases) solutions (15) are 
valid only approximately. 

 

3.    CONCLUSION 

Analytic expressions for acoustic velocity and pressure obeying the one-dimensional equation 
of flow of inviscid perfect gas are obtained using Lie group approach. One set of these expressions 
is invariant with respect to simultaneous uniform expansion along time and spatial coordinates 
while another one remains constant if ratio of quadratic expansion along the spatial coordinate to 
linear expansion along time axis is constant (self-similar solution). 
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