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INTRODUCTION

The results to be presented in this note are the outcome of a
study which was begun at Thorn EMI, Naval Systems Pivision, aimed
at producing better methods of assessing the accuracy of tracking
systems. The study was prompted by the need to analyse the error
performance of different range configurations during the prepar-
ation of proposals. The use of existing methods involved extens-
ive and time consuming numerical calculations.

The purpose of a tracking range is to locate an object which may
be moving, within a volume of water. The type of system under
consideration here comprises a number of receivers, transmitters
or transponders located at fixed and known positions. The dis-
tances between the object and those positions are measured and
then converted into X,Y,Z position or range and bearing, by a
suitable numerical transformation carried out by a computer.
Distance may be found by measuring the time taken for pulses to
travel between the object and the known positions, and then mul-
tiplying by the speed of sound.

Two key aspects of tracking range performance are the time to
produce a fix, and its accuracy. The calculation time becomes im-
portant if the object is moving quickly. In underwater applicat-
ions, however, speeds are low, the update rate does not need to be
high and finding a computer which can handle the data collection
and transformation tasks in real time should not be difficult.

A number of factors determine accuracy, some largely under the
control of the designer, others uncontrollable and perhaps unpre-
dictable. In the first category are the minimum increment in
time, and the numerical precision of the algorithm. In the second
are the true value of the speed of sound, and its variation from
day to day and from place to place on the same day. The distri-
bution of the datum positions throughout the water volume, and the
accuracy with which they can be specified also affect accuracy.
Ideally the distribution is controllable, but in practice it may
be restricted, for example by features on the sea floor. '

Accuracy may be assessed by modelling the errors in observed
variables and applying the numerical transformations which convert
travel time into the desired co-ordinates. Particular values may
be assumed for the errors, in which case exact knowledge about
performance under one set of conditions is gained, but a number of
carefully chosen cases must be studied to form an overall picture.
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Alternatively, the errors can be assigned appropriate statistical
distributions, and average values and the scatter of fixing error
found over a number of trials. As the error distributions will
vary with the environmental conditions, this process must be
carried out a number of times also. With either method, the
amount. of calculation required is considerable.

The metnod outlined in this note is to determine upper limits on
the accuracy which can be achieved for known levels of errors in
the data. The use of the method is demonstrated for a two dimens-
ional tracking range with three datum positions, using a specific
transformation of the distances, but the principles can pe applied
niore generally.

MATHEMATICAL DISCUSESION

1f the distance between a fixed point and a variable one is known,
the variable point lies on circle whose centre is the fixed point.
When the distances to several points are known, the unknown
position is located by finding the intersection of circles centred
at the known points. More thnan two distances must be known, as in
general, two circles intersect twice, pbut if there are no measure-
ment errors, three circles will intersect at a single point.
Errors will shorten or lengthen the circle radii, and instead of
three double intersections and one triple intersection, there will
be six double intersections (see fig 1). The problem is to make
an estimate of where the true position of the object is.

Let (xi,yi),i =1 .. 3 be the known co-ordinates,
(x, y) be the unknowns,
t i =1 .. 3 be the measured travel times, and let
c i =1 .. 3 be the speeds of sound along each path.
Then
(x - x,)2 + (y - y.)2 = (c.t.)2 i =1 3 (1)
i 1 171 v
Solution

Tt is a fairly obvious first step in finding the unknown coord-
inates, to remove the squared terms in the unknowns by subtracting
pairs of equations. Thus, taking the first ana second eguations,
and the second and third eguations,

, _ 2 _ 2 2 20 ..
(x1 - x2)x + (yl - y2)y = O.S(rl r, ) o+ O.5(d2 dl ) (2a)

, e 32 2 L2 )
(x5 = x3)x + (]2 - y3)y .0.5(r2 ry )+ O.b(d3 d2 ) (2b)
where r.? = (c.t.)z (3)

i id
2 2 2
di® = %" vy (4)
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For simplicity, choose the origin to be the circumcentre of the
triangle. Then all the distances are equal and the second term on
the right hand side of the equation disappears. :

These eguations are straight lines passing through intersections
of pairs of circles and are the common chords of those circles.
Note that any two pairs of equations from the set could be chosen,
but that forming a third equation from the remaining pair gives no
new information. The third line passes through the intersection
of the other two.

When there are no measurement errors, the lines intersect at the
triple circle intersection. Provided errors are small, the
solution of the equations which gives the intersection of the
chords is a good working estimate of the position c¢f the object.

The chord equations can be represented in matrix form by
AX = b

where A is the matrix of coefficients, X i1s tne vector of unknowns
and b is the vector containing differences of neasured distances.
The solution of these eguations, wnhich is the common chord
estimate of position, is then given by

x = A b

) -1 . . o -

where A is the inverse of A.

Allowing for errors in the data, the eguations can be written
(A + E)y = b + £

where E is the matrix containing the errors in specification of
datum positions, and f contains the errors in measurement of
distance.

The error in the fix is the difference between the solutions of
the ideal and actual equations

1
(

X =y = A7l - (2 ) H o+ £

(A + B) Y(Ex - f) | (5)

ACCURACY ANALYSIS

The error performance of a tracking system can be specified in
terms of the length of the error vector x - y throughout the
range coverage. Starting from equation 5, the upper limit for
fixing error is found in terms of the norms of the input matrices
and vectors expressing the measured values and taeir errors.
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A vector norm is a generalised measure of length, and with it is
associated a matrix norm, as discussed in [1]. There are many
norms, but the appropriate one for this analysis corresponds to
the usual definition of vector length,

2 2.0.5
| = (xl + X2 )

The associated norm for a matrix A, ||A|], is shown in [l] to be

BB

the largest eigenvalue of the the matrix ATA.

Following the analysis given in [1], it can be shown that if the
data errors are small, the relative error in a fix satisfies

Tz = vyl /0D € LA™ P aten /Tl + THELT/ LBl D (6)

The quantity ||Ail||A—l|[, known as the condition number of A, and
. written K(A), determines the sensitivity of the range to measure-
‘ment errors. It is not dependent on any of those errors, but
scales their effects. Range datum geometries with large condition
numbers will be more sensitive to measurement error.

This inequality relating input and output error can be used to
determine the performance of a tracking range. The condition
number, and the position uncertainty term need only be calculated
once, leaving just the effects of varying the distance measurement
error to be considered in detail. -

PERFORMANCE OF A 2~D RANGE WITH THREE DATUM POSITIONS

To demonstrate the use (6), first the condition number for a 2-D
range with a triangular arrangement of datum positions will be
found, then the effects of errors in the speed of sound and travel
times will be investigated.

Condition Number

In the particular case under consideration, it is possible to re-
late the sensitivity to the properties of the datum triangle in an
explicit way.

First, after calculating AlA, it can be shown that its character-
istic equation is

2 2 2, . . 2 .
s® - (h + 12 )s + (lllzsln(th)) = 0

where 1l and 12 are the lengths of two sides of the triangle
and 'th' is the included angle. The norm of A is the larger of
the two solutions of this equation and the condition number is
their ratio [1]. The roots can be expressed as the product of a
length squared with a term depending only on the length ratio and
the angle, and hence the condition number is independent of the
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size of the triangle, being affected only by its shape. Let

the ratio between the sides be r = ll/lz,lthen
2 . ; " g =
LAl = %7200 + v2 4 [(1 + r2)2 = (2r.sin(th)) 2795
2 1 -
K(A) = [1 + ré o+ [(1 + r2)2 _ (2r.sin(th))2]0'3]2/(2rsin{th))‘4 (7)

Equation 7 is plotted for different values of 'r' and 'th' in figs
2A and 2B, and it can be seen that the condition number has a
minimum of 1 for r = 1, th = 90. 1In this case, the datum triangle
is right-angled and isoceles. When that shape is distorted, the
condition numper increases and the fixes are less accurate for a.
given set of measurements. Long narrow triangles show greater
sensitivity to data errors than more symmetrical arrangements.

There will be in. general, three condition numbers associated with
a triangle, but only two if it is isoceles, and one if it is equi-
lateral. For an isoceles right angled triangle, the two condition
numbers are 1 and 6.85. For an equilateral triangle, the condit-
ion number is 3. With an arbitrary triangle, since the choice of
equations to solve is arbitrary, it is better to choose the two
equations which give the smallest condition number to take advant-
age of the lower sensitivity to error.

Measurement Errors

Datum Position Error. From the limit on relative error (6), it

can be seen that errors in eoec1fy1ng datum positions induce a
relative error in the fix which is constant over the range, and
hence the absolute error increases away from the origin.

Speed of Sound and Timing Error. Allowing for a bias of dc in the

speed of sound, and dt in the time measurements, the relative error
in distance measurement is (dc/c + dt/t). The relative error in a
fix induced by speed of sound error is also constant, whereas travel
time error induces a relative fix error which decreaseb away from
fne origin.

These predictions are compared with the behaviour of the actual
errors for an equilateral triangle in fig 3. The fix errors are
plotted at points equally spaced throughout a square with the
origin of co-ordinates at the intersection of diagonals. The
error magnitude is assigned to one of sixteen bands represented by
the characters 0 -~ 9, A - F, with '0' being the lowest.

Fig 3A shows the relative fix error for a bias of 1 in 103 in
timing and as predicted, the error decreases away from the origin.
Fig 3B shows the absolute fix error for a bias of 1 in 1.5x10° in
assumed speed of sound.. This plot exhibits an error 1ncreaalng
away from the origin in proportlon to range, which is also in
agreement with the prediction.
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DISCUSSION

The analysis has shown that the effects of the various sources of
input error can be separated, and for small errors, the contri-
butions from datum position uncertainty, speed of sound and
timing, add to-gether.  The range datum geometry has been shown to
affect sensitivity, and this has been quantified.

These results allow a quick assessment of the importance of the
different errors, and first choices of range parameters may be
made without extensive numerical computations. If follow=-on
calculations are required, this type of analysis can be used to
direct attention to the more important cases and so improve the
efficiency of a more detailed study.

REFERENCES

[1] James M. Orteqa,‘?Numerical Analysis', Academic Press, 1972

121

Proc.l:0.A. Vol 9 Part 4 (1987)




Proceedings of the Institute of Acoustics

ACCURACY. PREDICTION FOR.DISTRIBUTED TRACKING SYSTEMS

FIG 1 POSITION FIXING BY MEASURING DISTANCES
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FIG 2 EFFECT OF TRIANGLE SHAPE ‘ON THE CONDITION NUMBER.
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