
   

EIGENVECI‘OR ROTATION FOR PLANAR ARRAYS

AJ. Fenwick.

DRA Electronics Div. RSRE. St Andrews Road. Malvern. England. WRI4 3P5

1. INTRODUCTION

So—called Eigenvector Rotation (EVR). first presented at an IOA conference some years ago [i]. is one of

the still growing number of high resolution spectrum analysis methods. As with other altematives to the

MUSIC algorithm. there is a class of problems for which it is applicable. and a smaller one for which it is

particularly suited and outperforms MUSIC. In this case. it is the resolution of two uncorrelated signals by

an unshaded line array of equally spaced elements. This comes about because of the fortuitous existence of
an analytic solution for the two signal direction vectors. and because for a in line array. delay can be simply

derived from phase [2]. In this context. the method has been shown to exhibit robustness to phase and

amplitude errors [3]. It has been extended to the case where the signals are correlated [4]. The two signal

,optimisation has been used as the basis for resolving an arbitrary number of signals [5].

“5th arbitrary arrays, there is as yet no efiicient method of converting phase into delay. Assuming the

conversion can be carried out. the angle of arrival is then found by solving a set of non-linear equations. In

the following it is shown how to proceed in the case of regulariy spaced plane arrays. with a suggestion

about how to proceed in the general case.

2. THE THREE STEPS IN EIGENVECIOR ROTATION

Eigenvector rotation can be considered in three steps. The first step. common to all eigenvector-based

processing methods, is to estimate the number of signals from the eigenspectmm of the data covariance

matrix, and then to establish the bases for the signal and noise subspaces. Forwhite noise. this results in the

representation:-

It“: 021+ mew".

where the columns of W. wi are the eigenvectors corresponding to the greatest eigenvalues.m difl‘erences

between these and 0'2 form the diagonal matrix A. The wi form a basis for the signal subspace.

EVR is a signal subspace method Signal parameters are deduced from the signal eigenvectors of the data

covariance matrix, unlike MUSIC which operates on the noise eigenvectors. Any vector d representing the

components of a signal at the array elements can be expressed in the form I! = 2 bpwi and if D is the matrix
of all such vectors, D = “LAMB. The vectors di are alien referred to as signal direction vectors. Using the
singular value decomposition of Ru. it can be shown that B is unitary[6]. In the case of two signals. B is

generalised from a plane rotation matrix, and depends on a rotation angle and a phase.
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EIGENV'ECI'OR ROTATION FOR PLANAR ARRAYS

The second step in EVR is to determine the optimum B. At this point it can be noted that the optimisation
does not involve matching the data with postulated signal direction vectors. in contrast toMUSIC and
conventional beam-forming. It is still necessary to specify the behaviour which distinguishes direction
vectors from arbitrary combinations of the eigenvectors. and with this. an optimality criterion.

Vezzosi and Farrier define direction vectors as those having equal amplitude across the array. They measure

deviation from this condition with the so~called Varimax criterion which is the scatter of the squared
component amplitudes about the mean. Optimisation consists of finding a rotation matrix B which
minimises Varimax. When there are two signals, Vezzosi is able to derive closed form expressions for the
rotation parameters. involving the solution of a cubic equation

The third step is to extract angle ofarrival from the estimated signal direction vectors. Phase information is
available on taking logarithms. This is sufficient if direction of arrival is found by reverting to a
beamforming type of operation. If phase can be converted to propagation delay. angle of arrival can be
extracted directly. Reconstructing the delays is a process known as phase unwrapping.

' 3. ANGLE 0F ARRIVAL EXTRACTION WITH PLANE ARRAYS.

For an array ofn receivers. located at (xmyn), the observed phase urn for a signal of wavelength A at azimuth
and elevation (N9) is given by

it!" = (Zn/Mix“ cos o sin 0+ yn sin¢ sin e) - 2kn.1l (l).

where lt:n is the number of periods. The equation expresses the most general case dealt with here. In (1). the

\yn are calculated from the EVR estimates of signal direction vectors.

The two unknowns of interest are 9 and o. The unknowns kn are auxiliary parameters. In many applications

the elevation angle is also not required. There are more equations than primary unknowns. and a least

squares solution is needed. but the auxiliaries must be determined in order to define it completely. Stated

thus. the problem falls into the class of mixed integer programming problems. The solution of these is most

efficient if features applying to the particular problem are taken into account. Here the approach adopted is
to find the kn's. then apply least squares techniques in one of the ways to be discussed. The unfamiliar part

of the problem is in determining the Ian’s.

The unwrapping algorithm given by Jefl‘reys and set out in Appendix A uses the fact that the phase

difference between adjacent elements in a line array is nominally constant. A simple extension applies when
the spacing varies. since then phase normalised by the corresponding spacing is constant. For regular plane

arrays. there are other invariants. For example. the sum of delays at elements in a circular may add to zero.
In a triple of demerits which form the sides of a right angled triangle. the delays along the two sides

including the right angle produce urtity if normalised. squared and added. For some mOre general

arrangements of receivers it may be possible to carry out phase unwrapping as discussed in section 6.

To find the angle of arrival. equation (1) may be rearranged. with co-ordinates expressed in terms of
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wavelengths. and phase as a number between 0 and l, to give the equation:-

A.“ = (p

where the elements of the matrix A are

aln=an~aZn=Yrfl~
u= [oos¢sin0. sin¢ sin of.
‘P = [tun/l" + kn]-

Equation (2) is linear in u and this opens up three ways to proceed to a solution. It may be found numerically

using non-linear least squares techniques. A direct, sub-optimum solution is found if it is assumed that the
direction oosines cos a) sin 9 and sin¢ sin 9 are independent ofeach other. in which case the least squares
solution is

u =(ATA)-‘.AT.<p (3).

If the problem is treated by taking account of the non-linear constraint on ul and u;. a similar expression

may be obtained. This is proved in Appendix B and used in the next section.

4. BEARING OF A SIGNAL IN THE PLANE OF A GRID ARRAY

1b estimate bearing. time of arrival at every element must be related to time of arrival at the array phase
origin. A plane array whose elements are placed at the intersections of two sets of parallel lines offers the
same advantages as a line may in phase unwrapping. The line array algorithm depends on finding an
estimate of the standard unit of delay along the line. With a plane grid array. phase reconstruction is carried
out by finding units of delay along grid lines. An algorithm is given in Appendix A.

Ifthe signal lies in the plane ofthe array. the dependence on sin 9 disappears in (1) and the optimum solution
must satisfy the condition llu(o)|| 2 = I. It is shown in Appendix B that this solution is

u(o) = (ATA-i- o I)".AT.(p ' (4).

where a is found as the solution of the constraint equation llu(o)|| 2 = 1. It is also shown in the Appendix
that the constraint equation is a quartic. This class of equation can be solved using radicals [7].

The squared error of the constrained estimator is (pTa - A (ATA+ o D‘IATM) — o. and that of the linear
estimator is rpTa - A (ATA)‘1AT)(p. Since equation (1) is satisfied exactly in a noise free environment, (4)
must reduce to (3). and from this it follows that o in some way measures the input noise.

5. BEARING ACCURACY ASSESSMENTS

Bearing accuracy is dependent on the efficiency of the delay reconstruction. and the accuracy of the
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estimator. With a linear estimator. the accuracy is improved as the number of samples increases. provided
that noise characteristics remain the same. In reconstructed delay data. jumps may occur. and the noise
properties thus vary. It is of interest to determine the effect of the number of elements and the shape of the
array on the accuracy of reconstruction. The latter is significant because for a given number of elements.
there are more jumps in the raw phase data. and more chances for a wrong choice of period. if the array is
long and thin In assessing estimation accuracy. only the linear and constrained optimum estimators need be
considered. The issue is how effective in reducing error is the extra step of forcing the estimates to obey the
constraint.

For the purpose of testing the algorithms. particularly delay reconstruction, simulations were conducted
from which statistics were gathered. It is. however. possible. using the expressions above for squared errors
to find expressions for some of the bearing error statistics. For the simulation some simplifications to the
model were made. The signal was assumed to lie in the plane of the array. The noise was modelled as a
uniformly distributed phase deviation about the true delay. It is sufficient to restrict bearings to one quadrant
because of may symmetry.

To assess the effect of shape. three amys ofthirty elements in rectangular arrangements of 15x2. 10x3 and
6x5 elements were considered. Unwrapping and estimation errors over 1000 trials were found for a range
of bearings and phase deviations, and some results are given below. For the constrained estimator. the
parameter was found using Newton-Raphson. The simulations were carried out on a SUN and the program
was written in 'C'.

5.1 Unwrapping Efficiency

The simulations showed that the unwrapping algorithm performed successfully at low noise levels on all
anays except at the ends of the quadrant.'l‘olerance to large phase deviations was dependent on the array. At
broadside and endfire. unwrapping failed most ofien because the sign of the phase gradient was in error.
which. however may not lead to large enors at these bearings. Further details are given in Table 1.

Table l: Unwrapping Failures (%) for three 30 element arrays

Array: 15x2 10x 3 6x 5
Angle(deg) Angle(deg) Ang1e(deg)

Noisel 0 30 60 90 0 30 60 90 d 0 30 60 90

9 l0.l70 0010 0.(X)0 0.728l0.433 0.000 0.000 069110.603 0.(X)0 0010 0.722
27 l0.llO MIX) 0100 0.881l0.429 0.000 0.000 0.686l0.6ll 0.(X)0 0030 0.715
45 l0.128 01110 0.011 0.999l0.453 0.000 0.000 0.981l0.606 0.(X)0 01110 0.833
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5.2 Relative Accuracy of the Estimators

Both estimators gave low average bearing error. but the constrained estimator is at an advantage in having
lower variance. Typical valuesare given in table 2. The stopping condition for the constraint iteration was!
I ||u(o)ll 2 - l I <10‘6 . and was reached in an average of less than 20 iterations. There was no attempt to
investigate a tradeofi' between accuracy and time to converge. as a more efficient iteration can be found.

Table 2: Estimator Bearing Accuracy for three 30 element arrays

-o.oos(o.055)
0.000(0002)

0.CD3(0.02])
0.001(0000)

0.000(0.001 )
0.000(0.000)

0.007(0.477)
0.001 (0.014)

-0.001 (0.187)
0.001(0004)

0.001 (0.005)
-0.000(0.003)

—0.002(0.022)
0.000(0005)

-0.005(0.010)
0000(0001)

-0.000(0.001)
0.001(0.001)

0.013(0193)
-0.005(0.045)

-0.002(0.090)
0.00] (0.01 2)

-0.003(0.0l 2)
0.002(0007)

Array 0

l5x2 I 9 l 0.(D8(0.070)
I c 0.(XJ6(0.048)

l 27 l 0.055(0.684)
I c 0.009(0.434)

10x3 I 9 l 011320.025)
| c 0.004(0015)

| 27 l 0.CD8(0.204)
| c o.oo9(o.125)

6x5 | 9 l 0.(I)l(0.007)
| c 0.002(0.004)

-0.003(0.0lO)
-0.003(0.010)

-0.005(0.008)
«0.003(0006) 0.001 (0.002)

|27 l 0.(I)9(0.067)
| c 0.(I)7(0.036)

-0.002(0.081)
-0.003(0.077)

0.006(0076)
0.003(0053)

0.009(0043)
0.004(0.023)

Key: l=linear estimator, c=constrained estimator
average error(varia.nce)

6. DISCUSSION AND CONCLUSIONS

The technique of delay reconstruction for grid arrays is capable of extension in an obvious manner to
regularly spaced three-dimensional arrays. For the extension to irregular arrays. a phase-related quantity is
required which can be treated similarly to phase difference as above. For triples of elements where the two
shorter sides of the triangle are less then NZ. estimates of sine and cos ¢ can be obtained from (I). The
circular functions are nominally constant across the array and may serve the ptu-posc.

Overall it may be concluded that the techniques are a viable option for processing of signal phase
information for plane arrays at low phase deviations. They are capable of extension as noted.
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5.2 Relative Accuracy ofthe Estimators

Both estimators gave low average bearing error, but the constrained estimator is at an advantage in having
lower variance. Typical values are given in table 2. The stopping condition for the constraint iteration wasl
l llu(o)l| 2 - l l <104s . and was reached in an average of less than 20 iterations There was no attempt to
investigate a tradeoi‘f between accuracy and time to converge. as a more efficient iteration can be found.

Table 2: Estimator Bearing Accuracy for three 30 element arrays

15x2 l 9 l 'O.(X)8(0.070) -0.006(0.055) O.(I)3(0.021) 0.000(0.001)
I c 0.(X)6(0.048) 0.000(0.002) 0.001(0.000) 0.000(0.0(X))

l2? 1 0.0550684) 0.007(0.477) -0.00I(O.187) 0.001(0.005)
I c 0.(D9(0.434) 0.001(0.014) 0.001(0.(I)4) 0.000(0903)

10x3 I9 I 0.002(0.025) -0.002(0.022) -0.005(0.0l0) -0.000(0.001)
l ‘c 0.(X)4(0.015) 0.000(0.005) -0.000(0.00l) 0.001(0.001)

I27 I 0.(X)8(0.204) -0.013(O.193) -0.002(0.090) -0.003(0.012)
l c o.oo9(o.125) -0.005(0.045) 0.(X]l(0.012) -o.ooz(o.oo7)

6x5 I9 I 0.001(0.007) -0.003(0.0]0) 0.005(0.(X)8) -0.002(0.004)
l c 0.(I)2(0.004) -0.003(0.010) -0.003(0.006) 0.001(0.002)

|27 I 0.m9(0.067) -0.002(0.081) -0.(X)6(0.076) 0.0090043)
| c 0.w7(0.036) -0.003(0.077) -0.003(0.053) 0.(X)4(0.023)

Key: l=linear estimator, c=constrained estimator
average error(variance)

6. DISCUSSION AND CONCLUSIONS

The technique of delay reconstruction for grid arrays is capable of extension in an obvious manner to
regularly spaced three-dimensional arrays. For the extension to irregular arrays. a phase-related quantity is
required which can be treated similarly to phase difierertce as above. For triples of elements where the two
shorter sides of the triangle are less then'Nl, estimates of sin¢ and cos o can be obtained from (1). The
circular functions are nominally constant across the array and may serve the

Overall it may be concluded that the techniques are a viable option for processing of signal phase
information for plane arrays at low phase deviations. They are capable of extension as noted.
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APPENDIX A: PHASE UNWRAPPING ALGORITHMS

A.1 Line Array Spaced At Less Than N2
The algorithm given in [2]. for determining the true delays at receivers in a line may given the phase factors

p“. n=1....N. where 0 < lpnl < 1. is in three steps.

1. Frnd the difl'erenoes Apm = pm“ - pm. m=1..., N-l. and find the slope ofthe trend line by first correcting

the Apm where necessary by adding 1 so that they are all positive. Ifthe average Ap' < 0.5. the slope of the

trend line is positive. otherwise it is negative. -

2. Assuming the slope of the trend line is positive, form the true phase differences tsp“... using the

preliminary corrections. Ap'm. '
if 0 < Ap’m < 0.5. do not adjust further. Ap m = Ap'm. Form the average Ap" of these.
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For the remaining values. if Ap'm < Ap" + 0.5, then Ap"m = Ap'm, otherwise Ap",.‘rl = Ap'm - l.

3. Starting at receiver 2. add the corrected phase difference to the phase at the previous receiver.

A.2 Grid Array With Closest Neighbours At Less Than N2
Select the array phase origin. This lies at the intersection of two grid lines.

1. For all lines of receivers in one direction. reconstruct the delays as in section A.1.

2. For the line of receivers througth the origin in the other direction, reconstruct delays as before.

3. Along this line. compare the new phases with the old. Where difierent. adjust the phases of all receivers
along the line in the first direction.

APPENDIX B: OPTIMUM CONSTRAINED LEAST SQUARES ESTIMATOR

In equation (2). the squared error for any solution u is given by

e(u) = (A.u - (p)T(A.u - (p),

where. because the signal is in the plane of the away. Hull 2 = 1. To find the optimum solution which takes
account of the interdependence of ul and u;. the Lagrange multiplier approach is used.

Consider

e(u,o) = (A.u - (p)T(A.u - (p) + 0(llull 2 - 1.)

Differentiating with respect to the components of u. the normal equations

(ATA+OI) u=AT(p (3.1)

are found. having the solution u(o) given by equation (4). The parameter 0 satisfies

(pTA (ATA+ o D’ZATtp = 1 (13.2).

If g are the projections of ATtp onto the eigenvectors of ATA. and pi. are the eigenvalues. then (8.2) can be
written as g,2(p2+o)2+ g22(pl+<r)2 = (91w)2(p2+o)2, which is of degree four.
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