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ABSTRACT

In a number of recent publications{1, 2, 3,4] the authors have derived and made use of exact power flow
results for a pair of multi-modal sub-systems coupled by a conservative spring at a single point. This
work has been used 10 study the assumplions inherent in traditional Statistical Energy Analysis (SEA)
technigues. Although giving many insights, the Bmitations of the original model have restricied the
number of situations where this earlier work could be used. The present paper lays the theoretical
groundwork 1o relax the most severe of these restriclions. Specifically, the theery developed allows for -
arbitrary numbers of sub-systems and these can be coupled in any fashion desired, including having
more than one coupling between pairs of sub-systems. The couplings are <l provided by conservative
springs at discrete points bul it is considered that this is relatively unimportant for studies in a number of
areas of interest.

The current work is primarily aimed at quantifying deviations from the mean power flows predicted by
SEA where restrictions on coupling details are more than outweighed by having exact results 1o tompare
with. Such studies are of particular relevance 1o SEA models having relatively small numbers of sub-
systems or where the couplings are strong. Unfortunately, the results presented are not in closed form,
rather an algorithm is derived that is amenable to computer solution. Although not discussed here it js
clear that closed form solutions are recoverable for certain standard geometries,

I, INTRODUCTION

Statistical Energy Analysis (SEA) is a technique for studying the flow of energy between coupled sub-
systems in terms of ensemble averages taken across realisations of sub-systems with different properties.
To enable the technique 10 be thoroughly studied Tequires thal exact calculations be made for given sets
of sub-system parameters, i.e., a deterministic approach. The anthors have made such stodies for the
cas¢ of lwo sub-sysiems coupled at a single poini by a lincar springl1, 2,3, 4], see for example, Figure 1.
The cumenl paper expands this work by considering an arbilrary number of sub-systems coupled by
many springs. The springs used are still taken to be linear and apply forces at single points on the sub-
sysiems, see Figure 2. However, no restrictions are placed on their strengths or the propertics of the
sub-systems, save that they can be represented by Green funclions relating harmonic force at any point
to response at any other. The Green function approach allows a theory to be derived in its most general
form without reference to the details of particular sub-systems, This method has been used by Lang-
ley[5] amongst others. The key difference between that work and the present paper is the use only of
the Green functions of the uncoupled sub-systems. This is of course necessary when actual problems are
te be tackled, since these are the only functions normally available,

2. THEORY

Consider N sub-sysiems, Iabelled by lower-case letier subscripts and M springs indicated by numbered
subscripts.  Then label one end of each spring A and the other 8, ste again Figures 1 and 2, Clearly,
M2 N-1if the sub-systems are 1o form a single system for study. Nexi, let the vector (¥ )4 be the dis-
placements from their mean position of the ends A and (¥} these at the ends 5. Obviously, both
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veciors have M elements. To begin the analysis, essume that all the coupling springs are of zero
strengih, ie., the sub-systems are completely uncoupled, and indicate this by a subscript 0. The vectors
{¥ lao and {¥ Jag then represent the displacements at the spring atiachment points due 1o external forcing
alane. Next, consider the displacement at the point of attachement of one spring on a sub-system
caused by deflection of another spring on the same sub-system, in the absence of forcing and indicate
this by subscript I7. This displacemeni will be governed by the relevant Green function for the sub-
system and the spring constant of the deflected spring. if aff the springs on all the sub-sysiems deflect
this may be written as
¥ dar = [A14 (1Y Jay - (¥ Law).

where [A ), is a matrix of Green funclion and spring constant products with one column for each spring
and zero elements occurring where sub-sysiems are not directly connecied 10 each other. When the
whole system is externally excited the deflections due to the forcing may be superposed on those due 1o
the couplings 10 give

Vg =¥ Lo (ALY 4= (Y )p) (1)
and of course the same is true for {¥ Jg
(¥ls= Flaom [Als({¥ Jp— (¥ W) = {¥ Jpo+ AL ({¥ Jua~[¥ }s). (2)

Subtracling these two equations gives
(Fla=Flp = [AY]= ([Y Yoo (¥ Jpo)—([Ala+[A15) [AY },

= [AY o ([A 14 +14 1) (AT ),

where {AY ] is the vector of spring compressions and {AY }y the changes in scparation of the spring
attachment points in the absence of coupling. This expression may be inverted to yield

07 )= [ 4L+ 142s] (87 o 3

= (D) '{aY ),

where [D] represents the quantity in brackets. Notice that the determinant of [D] is 2 measure of cou-
pling strength which tends 1o unily as the coupling becomes weak (weak coupling is usually defined as
that where the behaviour of the sub-systems is not greatly affected by that of the coupled sub-sysiems,
j.e.. where [D] becomes {I]), Also, the matrix [D] has dimensions fixed by the number of springs
rather than the number of sub-sysiems. Assuming that [D] can be formed and inverted to produce
{AY ), it is possible 10 express the equations for the individual coupling point motions as

Figure 1 - Two sub-systems and one spring.
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Thal is, in terms only of the properties of the sub-systems and the responses of the uncoupled problem.
Notice that the vecior

(f o
{¥ lge

has 2M elements and describes the motions of all the spring attachement points in the absence of cou-
pling. Finally, the motions of other paints within a sub-system can be generated from the veciors {Y ),
and {¥ )z using the Green funciions evaluated for the responses at the points of interest rather than the
spring attachement points,

J. ENERGY FLOWS

The previous equations allow all the quantities of interest for a particular case 10 be determined since
energy flows can be found from the product of force and velocity at the ends of the springs, or, in gen-
eral, from the diagonal elements of (Y niry multiplied by the relevant spring consiants (where a *
indicates the complex conjugate), i.e., based on

[
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Figure 2 - Three sub-systems and three springs.
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To determine the vectors [¥ 1o and {¥ )zo consider F, 10 be a forcing function applied 1o the a th sub-
system and Yy the response of the sub-system, when uncoupled, at the point of connection of the j th
spring (the particular end, A or B, not being specified). Then

Yoo = | galxjx)Fa(x)dx

where x is a suitable dummy variable and the integral is taken over the a th sub-s}stem. Here, g.(x;.x)
is the Green funciion for sub-sysiem a evaluated at the point of attachment of spring j due to forcing at
the point x, Now if the forcing function is separable in time and space then

Fa(x) = Foxfo(x)

where f,(x) is a function only in space 50 Lhat
Yoo = Fof 8a(x;x)fulx)dz
a . .
These Green function integrals can be formed into a 2M x N matrix [gf ] defined by

{¥ hao

- = [gf){F) (4}
{¥ Jao

where (F} contains the time varying forcing functions for each of the ¥ sub-systems. Notice that each
column of [gf] is specific to a particular sub-system, each row to the end of a spring and thal the order-
ing must align with that chosen for the vector of spring motions. Since one end of a spring can only be
connecled o one sub-sysiem each row has one and only one element. When the energy flows are con-
sidered this matrix formulation leads to

¥ la .
['—_ (¥ Mol I¥ Jof = [2f 1 ISer1lgf VT (%)

Y Jao

where [SgF] is the squm'e matrix of forcing spectra and co-spectra and is diagonal for forcing uncorre-
lated between the sub-systems. This leads 1o

FRWIE= [(m-1A1,101 )" iA [DI")'][sf 1 (Ser)ief T ©

x [([A LTI (A 2T ')T]

and, of course, only the M elements on the diagonal of this matrix need be considered, leading to the
M encrgy flows through the M springs. Notice that for point forcing, where f(x)=8(xg), (where the
subscript 0 indicates the point of forcing) the terms in the matrix [gf ] are of the form

Bo(x;,xq).

To complete the analysis, the energies lowing into the N sub-sysiems must be found (the energy dissi-
pated being the difference between these and the fows in the springs). They are found by integraiing
the products of response and exiernal force over the sub-systems of interest, The responses at arbitrary
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positions x,_, within the sub-systems are given by
r -

J #a(xe ) Fu(x)dx

Yolxs) J 8(xs ,x)Fy(x)dx
L

Yy(xy) |

+ [B{x)]{aY}

Yix))=

Y (xn)

| o (xwx)Fy(x)dx
¥ J

where {B{(x)] is a non-square matrix of spring constant and Green function products, with the Green
functions evalualed at the points of imerest. It has dimensions Nx M and zero clements in the rows
corresponding (o springs not direcily connected to the relevant sub-systems. The input powers are then
derived from the diagonal elements of

J 1Y @O IF ) .

which are functions of the forcing specira and co-spectra.

4, EXAMPLES

To make use of these relationships the matrices [A)y, [41g, (D), [gf ), (S7F] and (B (x}] must be found
from the sub-system properties and the external forcing. Unfortunately, no simple expressions can be
given for the elements of these matrices, since they encompass the geametry of the problem which need
take no general form (because not all sub-systems are necessarily mutually connected and some may be
multiply connected). The matrix [D] however, is simply the sum of [[], [A], and [A]5. Als¢ the
matrices [A),. ([A)s and [D] have the same order as the number of springs rather than the number of
sub-syslems or connection points, which apply to [gf ], [Ser] and [B(x)). This leads 10 a considerable
saving in effort when dealing with large, sparsely coupled problems. The form of these various terms is
best illustrated by considering simple examples where the forcing is applied at one point per sub-system
and is also separable in time and space. Take the case where N=2 and M =1, i.e., two sub-systems a
and &, with a single spring of strength X', see again Figure 1. The veciors {¥ ), and {¥ }a are then
scalars

(Fla="Yais
and
(¥ = Yous:
asare [A], and [A )5 :
[A)y = K\(ga(x1.21}),

(4] = K1(g{x.z))}
and [D] becomes
(D)= 1+ K,{(2g,(x1.x,) + g (x1.x)).
The matrix [gf] is

_gn(x!-xﬂ) 0
[8”'[ 0 g,(x,.xu)J

and [S7r] becomes
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_ |SFara Skars
{Sred = [Srm Srurs

while the matrix [B(x}] is

K g.,(x,.:; )
(B = ['Kll&(xb-xll)]'

Next consider N=3 and M =3, i.e., three sub-systems @, & and ¢ with three springs 1, 2 and 3, with two
springs connccling each sub-system 10 the two others, see Figure 2. Here the vectors (¥ }, and (Y )z arc
writllen as

Yaia
(¥la =q¥em
Yoza
and
Yoe
Vg =4¥erap
Y:?-F
[4])4 and [A 15 become
Kig(x1.21) Kapa{x1.2a) 0
(Als = | Kiga(xax)) Ksgo(xaxy) 0 '
~K g (x2,x)) 0 K 285 (x3,x2)
Kag(xyxg) 0 K 38, (xy.x2)
[Alg = 0 K g (x2,x3) Kag.(xax3)
0 K3g (x2.x3) Kag.(x2x2)
with [D] given by
14K (galxy )+ gp(x5,29)} K 3g.(x1,x3) —-Ka(gx,.x2)
K18 {x3.x)) 14+ K 3(go (X 3.23)+ 8:(X3.x3)) K ag.(x3.x2) .
~K 18 (x2.21) K38 (x2.x3) 1+ K o gy {22,224+ g:(x2,23))
Writing o, for K;g,{x;.x;) the structure of this matrix becomes more apparent, viz.,
14+ 0+ dpyy Oy33 -3t
0}= f,y 1+ 0533+ s O.x .
— @y .z l+apoat e

For this system Lhe matrix {gf ] is

2.(xy,x0) 0 0
Ba{x3,x0) 0 0
_ 0 & (x2.x0} 0
[fF1=1 0  glrxe 0 |
0 0 gt (13|x0)
Y 0 &-(Xz.xo)

and [$g¢) is given by
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Srare Srary Steare
(Srr) = |Spore Senrn Srvre |-
Srera Sk Sk

Finally, [B{x)] becomes

KI&(’:-‘]) ¢ | Kﬂa(xa .X;)
(B{x}] = |-Kig(xp.x)) Kage(xy,x2) 0
6 "Kz&(fe-xﬂ _Kﬁc(xzvxi)

Notice that for the matrices [A )4, [A g and {D], each column relates to a particular spring in the prob-
lem and that when a spring is emitted a complete column may be removed since its elements become
unity on the leading diagonal and zero elsewhere. For the matrices [gf ] and (B (x)] each column is for
a given sub-system and cach row a spring end, while for [S,;] the rows and columns are each for a sub-
system. It is clear that if the system of interest exhibits symmetry of any kind then suitable labetling of
the sub-systems and springs will produce matrices which show similar features and these may lead to
simplified solutions, ete.

5. ALGORITHM

The following algorithm for calculating energy flows may be deduced from the preceding analysis assum-

ing that the forcing is separable in time and space :-

(1) Label all the sub-systems and springs, indicating for each spring an end A and an end 5, as illus-
trated in Figures 1 and 2.

(2) Chose a frequency of interest and use the Green functions of the uncoupled sub-systems 1o form
the matrices [A ], and [A ]5: equations (1) and (2).

(3) Som [A]4 and [A )y with [I] 10 form [D] and invert it; equation (3).

{4) Use the chosen forcing model and the sub-system Green functions 1o form the matrices [gf ] and
[S£¢); equations (4) and (5).

(5) Cakulae the diagonal clements of the energy flow mairices; equation (6).

{6} Deduce the dissipation energy Bows using the inputs and fAlows through the springs.

(7} Assuming that the kinetic energies of the sub-systems are related directly to the dissipation flows,
find the sub-system energy levels {i.c., assuming viscous damping).

(8) Ratio the energy levels and coupling energy flows 10 generate he coupling loss faciors used by
SEA.

{9) Repeat steps 2 to 8 for all the frequencies of interest,

(10} If total energy flows are required, integrate the flows over the frequency range of interest, noting
that a matrix inversion is required for each frequency examined, before 1aking steps 7 and 8.

This scheme can be considerably speeded up if the matrix [D] can be inveried algebraically, either
because the system has some simplifying property, or by using an algebraic man ipulator.

6. CONCLUSIONS

This paper has outlined a method for calculaling exactly the energy flows between many multi-coupled,
multi-modal sub-sysiems. The method used is couched in terms of Green funciions describing the sub-
systems, spring constanis for the coupling elements and specural densities for the energy flows. Two
simple examples have been given 1o illustrate the equations derived. The material presented will form
the basis of further studies into variance estimates for SEA methods using Monte-Carlo methods. That
is, large numbers of randomly varied systems will be formed, this method applied 10 each in turn and
the statistics of the resulling energy flow averages calculated withour making assum ptions concerning cou-
pling strengths, numbers of sub-systems, modal densities. eic.
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