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ABSTRACT
in a number of recent publications[1.2. 3.4] the authors have derived and made use of exact power flowresults for a pair of multi-modal sub-systemscoupled by a conservative spring at a single point. Thiswork has been used to study the assumptions inherent in traditional Statistical Energy Analysis (SEA)techniques. Although giving many insights. the limitations of the original model have restricted thenumber of situations where this earlier work could be used. The present paper lays the theoreticalgroundwork to relax the most severe of these restrictions. Specifically. the theory developed allows forarbitrary numbers of sub-systems and these can be coupled in any fashion desired. including havingmore than one coupling between pairs of sub-systems. The couplings are still provided by conservativesprings at discrete points but it is considered that this is relatively unimportant for studies in a number ofareas of interest.

The current work is primarily aimed at quantifying deviations from the mean power flows predicted bySEA where restri ions on coupling details are more than outweighed by having exact results to comparewith. Such studies are of particular relevance to SEA models having relatively small numbers of sub-systems or where the couplings are strong. Unfortunately. the results presented are not in closed form.rather an algorithm is derived that is amenable to computer solution. Although not discussed here it isclear that cIOSed form solutions are recoverable for certain standard geometries.

I. INTRODUCTION
Statistical Energy Analysis (SEA) is a technique for studying the flow of energy between coupled sub-systems in terms of ensemble averages taken acres realisations of sub-systems with different propenies.To enable the technique to be thoroughly studied requires that exact calculations be made for given setsof sub-system parameters. i.e.. a deterministic approach. The authors have made such studies for theme of two sub-systems coupled at a single point by a linear springll.2.3.4]. see for example. Figure I.The current paper expands this work by considering an arbitrary number of sub-systems coupled bymany springs. The springs used are still taken to be linear and apply forces at single points on the sub-systems. see Figure 2. However. no restrictions are placed on their strengths or the properties of [PMsub-systems. save that they can be represented by Green functions relating harmonic force at any pointto response at any other. The Green function approach allows a theory to be derived in its most generalform without reference to the details of particular sub-systems. This method has been used by Lang-ley[5] amongst others. The key difference between that work and the present paper is the use only ofthe Green functions of the uncoupled subsystems. This is of course necessary when actual problems areto be tackled. since these are the only functions normally available.

2. TH EORY
Consider N sub-systems. labelled by lower-case letter subscripts and M springs indicated by numberedsubscripts. Then label one end of each spring A and the other 8. see again Figures 1 and 2. Clearly.M2 N—l if the sub-systems are to form a single system for study. Next. let the vector [Y lg be the dis-placements from their mean position of the ends A and [Y], those at the ends 8. Obviously. both
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vectors have M elements. To begin the analysis. assume that all the coupling springs are of zero

strength, i.e.. the sub-systems are completely uncoupled. and indicate this by a subscript 0. The vectors

[Y ho and [Y in then represent the displacements at the spring attachment points due to external forcing

alonet Next. consider the displacement at the point of attachement of one spring on a subsystem

caused by deflection of another spring on the some sub-system. in the absence of forcing and indicate

this by subscript U. This displacement will be governed by the relevant Green function for the sub-

system and the spring constant of the deflected spring. If all the springs on all the sub-systems deflect

this may be written as

0’ in; = [4 14(0' lay-(Y lav)-

where [A )A is a matrix of Green function and spring constant products with one column for each spring

and zero elements occurring whcre sub-systems are not directly connected to each other. When the

whole system is externally excited the deflections due to the forcing may be superposed on those due to

the couplings to give

(Yla= (Yin-[AlAth-D’la) (1)

and of course the same is true for (Y )5

[Y]. = (yiao‘[415([yia—iyh)=(Vlao‘l'ulcflyia‘iyial (2)

Subtracting these two equations gives

[Y h- ” is = [AY]= (iYiao—(Ylao)-([A14+[A]a)lAY).

= [AY)O'([A].4+M]3)[AYL

where [AY] is the vector of spring compressions and [Ana the changes in separation of the spring

attachment points in the absence of coupling. This expression may be inverted to yield

in l = [rm [A t. + [A 1.]"w )o- (3)

= [D]"(Aylo

where [D] represents the quantity in brackets. Notice that the determinant of [D] is a measure of cou-

pling strength which tends to unity as the coupling becomes weak (weak coupling is usually defined m

that where the behaviour of the sub-systems is not greatly affectedby that of the coupled sub-systems.

i.e.. where [D] becomes [1]). Also. the matrix [D] has dimensions fixed by the number of springs

rather than the number of sub-systems. Assuming that [D] can be formed and inverted to produce

[Al’ 1. it is possible to express the equations for the individual coupling point motions as

Figure l - Two sub-systems and one spring.
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l7 hetn. = (y’AU—[A]A[D]_1‘AY)O= [(lll-[AlalDl")l(lAlAlDl")] [fl
,0

and

(Y lat)tr), = tr laa+lA 1.tot"tm..= [(lA 1.tDJ-')I<m—tA Mom] "-1
‘0

That is. in terms only of the properties at the sub-systems and the responses at the uncoupled problem.
Notice that the vector

(Y L10

(Y in

has 2M elements and describes the motions of all the spring attachement points in the absence of cou-
pling. Finally. the motions of other points within a sub-system can be generated from the vectors 0' ]A
and (Y I. using the Green functions evaluatedfor the responses at the points of interest rather than the
spring attachen-tent points.

3. ENERGY FLOWS
The previous equations allow all the quantities of interest for a particular case to be determined sincc
energy flows can be found from the product of force and velocity at the ends of the springs. or. in gen-
eral. from the diagonal elemean ol‘ (YEW); multiplied by the relevant spring constants (where a '
indicates the complex conjugme). i.e., based on

 
Figure 2 v Three sub-systems and three springs.
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(Y Ho
(“KNEE [UH-[Al‘lDl")"([ALt[D]")'] (y)

an
(1’ 1H" lIn}

x [m 1. tot-'flttn— 1A 1. (D 14?].
To determine the vectors [Y i“ and (Y )50 consider F. to be a forcing function applied to the a th sub-
system and Y.” the response of the sub—system. when uncoupled. at the point of connection of the j th
spring (the particular end. A or B . not being specified). Then

Y.,-o= I r.<x,.x)F.tx)dx

where x is a suitable dummy variable and the integral is taken over the a th sub—system. Here. g,(x,~,x)

is the Green function for sub-system 11 evaluated at the point of attachment of spring} due to forcing at
the point I. Now if the forcing function is separable in time and space then

F..(x) = F.><l.(x)
where f.(x) is a function only in space so that

r.” = n] s.(x,-.x)!.(x)cu
. _ _

These Green function integrals can be formed into a 2M KN matrix [gf] defined by

Who
- = [UHF] (4)

(“:0

where (F) contains the time varying forcing functions for each of the N sub-systems. Notice that each
column of [gr] is specific to a particular sub-system. each row to the end of a spring and that the order-
ing must align with that chosen for the vector of spring motions. Since one end ofa spring can only be
connected to one sub-system each row has one and only one element. When the energy flows are con-
sidered this matrix formulationleads to

(Y “a I
-_ trilolirtfo = rm [Srrltgn' (s)

(“so

where [SH-l is the square matrix of forcing spectra and co-spectra and is diagonal for forcing uncorre~
lated between the sub-systems. This leads to -

(Y i: [Y if = [(m- ta 1‘ lDl")' Ina t. to 1")']tg/ 1' [5”)th 1‘ (6)

X [([A In [D 1")"(ill- M In [D 1")T]

and. of course. only the M elements on the d'ngonal of this matrix need be considered. leading to the

M energy flows through the M springs. Notice that for point forcing. where f(x)=5(xn). (where the
subscript 0 indicates the point of forcing) the terms in the matrix [gl] are of the form

8.(va1a)~

To complete the analysis. the energies flowing into the N sub—systems must be‘found (the energy dissi-
pated being the difference between these and the flows in the springs). They are found by integrating
the products of response and external force over the sub-systems of interest. The responses at arbitrary
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positions 1,4 within the sub-systems are given by

J z,(t..X)F.(X)d-t
a

Y.(X.)no“) I. out .X)Ft(x)dx

(Y(X)i= + {HUMAN
Y .
"(m Ix~<xu.x)F~(x)d-r

N

where [B (1)] is a non-square matrix of spring constant and Green function products. with the Green
functions evaluated at the paint: of interest. It has dimensions NxM and zero elements in the rows
corresponding to springs not directly connected to the relevant sub-systems. The input powers are then
derived from the diagonal elements of

J tvtxn‘trtxnm

which are functions of the forcing spectra and oo-spectra.

I. EXAMPLES

To make use ol' these relationships the matrices [A 1‘. [A 1,. [D], [3!]. [5”] and [B (1)] must be found
from the sub-system properties and the external forcing. Unfortunately, no simple expressions can be
given for the elements of these matrices. since they encompass the geometry of the problem which need
take no general form (because not all sub-systems are necessarily mutually connected and some may he
multiply connected). The matrix [D] however. is simply the sum of [[1, [A14 and [A 1.. Also the
matrices [A 1‘. [A ]. and [D] have the same order as the number of springs rather than the number of
sub-systems or connection points. which apply to [xf]. [Sn-l and [B (2)]. This leads to a considerahle
saving in effort when dealing with large. sparsely coupled problems: The form of these various terms‘is
best illustrated by considering simple examples where the forcing is applied at one point per sub-system
and is also Separable in titne and space. Take the case where N=Z and M=l. ie._ two sub-systems a
and b. with I single spring of strength K,. see again Figure l. The vectors (Y )4 and (Y ), are then
scalars

[73.1 = Yam

and

I“: = Yen:

as are [A 1‘ and [A],:

[A in ‘3 KIM-(11.11)).

[A in = Kl(gl(xhxl))

and ID] beoomes

[D] = |+ Kt(£.(ltvxt) + ammo).

The matrix [gf] is

_ 3.01.10 0
[ell _ [ 0 850140)]

and [59-] becomes
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5hr- Sir-n

IS”) = 5hr. 5mm

 

while the matrix [B (2)] is ‘

K 8.(X..x )
[500] = ['KItSKIb-XltJ'

Next consider N=3 and M=3. i,e.. three sub-systems a. 1: End c with three springs t. 2 and 3. with two
springs connecting each sub-system to the two others. see Figure 2. Here the vectors {Y )A and [Y ), are
written as

7.1.1
(y )A = You

by

and

Yuri
(“a = Yul -

yell

[A 1‘ and [A], become

A’mtxt‘zt) Kse.(n.xs) 0
[Ah = Kte.(t:.n) Ksedxwg) 0 .

‘KISMXzJO 0 K285(12-12)

[{be01.31) 0 ‘KflbUtJfl
[A in = 0 K18¢(XJ.X:) mum»

0 198411.13) K28:(XZIXI)

with [D] given by

1+Kx(g.(n.n)+g.(xn.n)) K:x.(xr.xz) -Kz(sm.xz)
K 18.: (13.1 t) I+KJ(B.(13-XJ)+£¢ (13.13)) [(1848.12) .
—K 13.6211) KssszJs) 1+K2(:.(xzvxz)+xg(xz.xa)

Writing u,,-.- for K;g,(xi.xi) the structure of this matrix becomes more apparent. viz..

“Cl-n+0“: an: ‘5“:
[D] = 0.3: Hana" (1:3: 0:32

‘abzl 0:2: H‘lnzHXczz

For this system the matrix [gf] is

8-01.”) 0 0
3.016.”) (0 a) g

_ Er Xz‘X

W1" 0 35(1’1'4'0) 0 -
0 0 stumxo)
o 0 tit-(12.10)

and [Sn-l is given by
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5hr- 5r.» Star:
[5rr1= 5n:- Srara Srbn ~

5w. Shh 5m

Finally. [3 (a)! becomes

Kim-run) 0 163.0. ml
[3(x)l= -K1n(x..x.) Kmtxwz) o .

0 -sz.(x..xz) -K:z.(x..x;)

Notice that for the matrices [A )4 . [A l. and [D]. each column relates to a particular spring in the prob-
lem and that when a spring is omitted a complete column may be removed since its elements bccorne
unity on the leading diagonal and zero elsewhere. For the matrices [gf] and [B (1)] each column is for
a given sub-system and each row a spring end. while for [5”] the rows and columns are each for a sub-
system. It is clear that if the system of interest exhibits symmetry of any kind then suitable labelling of
the sub-systems and springs will produce matrices which show similar features and these may lead to
simplified solutions. etc.

5. ALGORITHM

The following algorithm for calculating energy flows may be deduced from the preceding analysis assum-
ing that the forcing is separable in time and space :-

(1) Label all the sub-systems and springs. indimting for each spring an end A and an end B. as illus-
trated in Figures 1 and 2.

(2) Chose a frequency of interest and use theGreen functions of the uncoupled sub-systems to form
the matrices [A l, and [A 1.: equations (1) and (2).

(3) Sum [A14 and [A l. with [l] to form [D] and invert it: equation (3).

(4) Use the chosen forcing model and the sub-system Green functions to form the matrices [gr] and
[5”]: equations (4) and (S).

(5) Calculate the diagonal elements of the energy flow matrices; equation (6).

(6) Deduce the dissipation energy flows using the inputs and flows through the springs.

(7) Assuming that the kinetic energies of the sub-systems are related directly to the dissipation flows,
[and the sub-qstem energy levels (i.e.. assuming viscous damping).

(8) Ratio the energy levels and coupling energy flows to generate the coupling loss factors used by
SEA.

(9) Repeat steps 2 to 8 for all the frequencies of interest.

(10) If total energy flows are required. integrate the flows over the frequency range of interest. noting
that a matrix inversion is required for each frequency examined. before taking steps 7 and 8,

This scheme can be considerably speeded up if the matrix [D] can be inverted algebraically, either
because the system has some simplifying property. or by using an algebraic manipulator.

6. CONCLUSIONS

This paper has outlined a method for calculating exactly the energy flows between many multi-coupled.
multi-modal sub-systems. The method used is couched in terms of Green functions describing the sub-
systems. spring constants for the coupling elements and spectral densities for the energy flows Two
simple examples havebeen given to illustrate the equations derived. The material presented will form
the basis of further studiesinto variance estimates for SEA methods using Monte-Carlo methods. That
is. large numbers of randomly varied systems will be formed. this method applied to each in turn and
the statistics of the resulting energy flow averages calculated without making assumptions concerning cou-
pling strengths. numbers of sub-systems. modal densities. etc.
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