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ABSTRACT

This paper considers an inhomogeneous solid sediment, whose density varies continuously with
depth, lying between two homogeneous media - an upper fluid layer representing the ocean and a
semi-infinite, homogeneous, solid substrate. The problem considered is that of determining the
reflection coefficient of a plane wave incident on the sediment from above. It is assumed that the
shear modulus in the sediment is small compared with the bulk modulus. Under these
circumstances the resulting equations, governing the generation of shear and compression waves,
can be tackled analytically. In particular, the equations demonstrate how a density gradient in
the sediment results in the continuouslgeneration of shear waves within the bulk of the solid, and
not just at the interfaces between two media. Analytical solutions are derived for the case of an
isovelocity sediment, and are used to investigate the effect of a continuous density variation within
the sediment, on the reflection of an incoming plane wave from the upper layer.

1. INTRODUCTION

The purpose of this study is to examine the effect on reflection loss of density variation in marine
sediments supporting shear waves. The effect of density variation on wave propagation through
solids has received relatively little attention in previous published work. Thus, ,while the
equations for wave motion in inhomogeneous solids have been'considered by a number of authors
[1, 2, 3], most. attention has been paid to the general case where shear speed, sound speed and density
all vary simultaneously. The resulting equations are complex, and do not lend themselves to easy
physical interpretation. Also, solutions are obtainable qnly for a limited number of
circumstances. Hook [1], for example, looks for forms of density and Lamé parameter variation
which permit the equations for compression and shear components to be decoupled. but assumes
that the Lamé parameters and density all have a similar dependence on depth, while the simpler
models of solid sediments developed by other authors [4, 5] do not consider density variations.
Density effects hm been considered by some authors (see, for example, refs. 6, 7, 8), but these
studies have concentrated on fluid sediments only. In a study of the efl'ect of density and speed
profile shapes on reflection loss in a fluid layer, Robins [7] concluded that density profile effects
can be significant at low frequencies. It was therefore thought worthwhile to extend the analysis of
ref. 7 in order to look for analytical solutions for an inhomogeneous solid sediment, and to assess
the influence of the density profile in the presence of shear waves.
The following sections show that, provided certain simplifying assumptions are made, the
equations of motion can be expressed in a form sufficiently simple to permit analytical treatment.
The resulting solutions are used to investigate the importance of density'profile effects at-various
frequencies. It would of course be possible to look at these effects using a numerical model such as
SAFARI [9], which represents density variation by splitting the sediment into a number of
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GENERATION OF SHEAR WAVES IN AN INHOMOGENEOUS SEDIMENT

homogeneous sublayers. However, this method suffers from the disadvantage that it is not easy to
differentiate between discretisation effects and the real effects of varying the profile, and Ref. 7

shows that the two effects can be of similar magnitude. For this reason it was considered desirable

to pursue the analytical route described below.

2. EQUATIONS FOR SHEAR AND COMPRESSION WAVES IN AN INHOMOGENEOUS
MEDIUM

The starting point for the analysis is the linearised momentum equation [1] governing wave

propagation in an inhomogeneous medium:

329— i - - .

p g = V [(h.+2p.)dlv g] - curl (pcurlg)

' (2.1)
—2(VLL) divg'+ 2(Vu- V)g + 2V]; A curlg,

where n is the particle displacement vector. In this equation the Lamé parameters A and u, and the

density p, may all be functions of position. We now make a number of assumptions, namely:

- the shear modulus u is small in relation. to the bulk modulus. This is equivalent to the

assertion that v2/c2 is small, where v is the shear wave speed and c the compression wave 1
speed. [NB This assumption is used only for an inhomogeneous medium. In the
homogeneous case it is not necessary to assume small p].

- the shear wave speed is a slowly varying function ofposition. This implies that terms
involving the gradient of the shear modulus may be neglected. '

- A the density is a general function of position, and is not constrained to vary slowly. Terms

involving the'ldensity gradient are therefore retained.

It is shown below that these assumptions lead to relatively simple equations for-P and S waves,

permitting exact solutions for plane waves. First of all, neglect of the Vp. terms gives

' dzu 1 p, .
——= = -V- pczdivu - —curl curlg.
at2 p. ( _ ) p . (2.2)

Defining D = div n, then taking the divergence of the above equation and neglecting V(|.1/p) gives

32D _ 1 » 2
fl — d1v|:EV (pc

Noting that the pressure p is defined by p = - (A+2u/3)D -KD , ' (2.4)

(2.3)

and neglecting terms of order vzlcz, results in the equation for p:
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132]: 2 1 .'—-—-Vp=-—V‘Vp. ‘c28t2 p p (2.5)
This is the well-known equation for pressure waves in an inhomogeneous fluid. The pressure
equation is therefore unaffected, to first order, by the presence of shear waves. _
We now seek an equation for the shear component of the motion, and assume that the shear wave is
polarised in the (x,z) plane. The particle displacement n is written in the familiar Helmholtz form

3 = V¢ + curly, ‘ I (is)

where m = (0, w, 0) has only one non-zero component. To get the equation for y. (2.2) is first re-
written as

8—2 = -le+EV23.
at? p P -- . (2.7)

Taking the curl of this equation, and noting that curl u = -V2m, gives

1 .
Vp A Vp."

(pv)2 _ (2.8)

 

182 2 4
fifi(Vy_)-Vy=_

This fourth order equation differs from the more familiar Helmholtz type of equation for shear
waves in homogeneous media [9] due to the presence of the forcing term on the right hand. side,
representing the continuous conversion of pressure to shear waves'within the medium as a result of
the density gradient. The mechanism can easily be understood by considering the propagation of
a plane compression wave through a medium in which density varies with depth.~ Except at normal
incidence, the wave front will not lie on a plane of constant p. Thus different particle motions will
be generated at different positions along the wavefront. That is, a shearing motion is generated,
resulting in the production of a shear wave. In the case of normal incidence the motion is of course
uniform along the wavefront and so no shear is generated. [The forcing term on the RHS of (2.8) is
exactly zero in this case since Vp and Vp are parallel]. Note that, in the limit of zero shear strength,
equation (2.8) shows that :1 satisfies a Poisson equation and is not identically zero, That is, the
fluid motion is not irrotational. However, no shear wave can be, sustained in that case. = V '
The scalar potential to in (2.6) is related to the pressure via (2.4), namely ‘

p = -Kdivu = - warp. ~ -' (2.9)

If we now make the usual assumption of an exp(-imt) time dependence, the equations for p and )1
become ‘ ‘ , r " - ‘ '

_ .. , l

(vamp. —Vp- v,,
P (2.10)
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1 
(V2 + k3) V2! = Vp A Vph

(pv)2 ‘ 1 ' ' (2.11)

where k, = talc and k. = m/v.

We now introduce new variables in place'of p and p, which transform'the above pair of equations

into a form amenable to analytical treatment for a Suitably chosen class of density profiles. ,In an
earlier paper on plane wave propagation in an inhomogeneous fluid [10], it was found convenient
to work in terms of the variables

w = 1N3. q = p/VE , . (2.12)

in place of p and p. These variables also turn outto be suitable for the inhomogeneous solid.
Substitution of w and q into equations (2. 10), (2.11) leads to the transformed equations

V2 k2 =EV2,
( + ’)q w w (2.13)

v2 18v2 =lv v.
( + I) y v2 WA q

Note that the RHS of the )1 equation now contains a linear dependence on w, in contrast to the
nonlinear density dependence in (2.11). If. we now assume a plane wave. so that the x dependence
of q and m is represented by exp(ik‘x)_, and 'also assume that p is a function only of the vertical
coordinate 2, then the above equations become

 

22 Iw (2.15)

d2 d2 2m
[—zuf-kEM—z-ki] =- {awn -
dz dz V . (2.16)

where a prime denotes differentiation with respect to z.

3. DENSITY PROFILES

Robins [10] has considered forms of density profile for which exact solutions of the Helmholtz

equation can he found in an inhomogeneous fluid. Clearly the density profile leading to the
simplest form of solution of (2.15) will be one for which w"/w is a constant. This leads to an
exponential form for w(z), and hence gives a density profile of the form
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3 . A. 1 _,
p = Ae'lz/(e'le + a)? = In sech2 (Otz - log a)] .i

(3.1)

This is denoted a “each squared" profile by Robins [10]. It is demonstrated in ref. 10 that this form
of profile is capable of giving a good fit to measured profiles in,marine sediments [11]. The
presence of the three parameters a, A and a in (3,1) means that a family of density profiles of
different shapes can be generated by- varying the value of a, and then choosing appropriate values
of A and on [which are dependent on the chosen 'a’ value] to force the density to take pre-determined
values at the top and bottom of the inhomogeneous layer. The case a _= 0 gives the simple
exponential profile considered by Tolstoy [12].
It is clear that, if werestrict our attention to an isovelocity layer whose density varies according to
(3.1), then (2.15) yields a simple exponential form for q, and likewise the solution of (2.16) is
expressible as a sum of exponentials provided the shear speed is constant. Exact solutions are also
obtainable, in principle, for a medium whose sound speed varies with depth, but the analysis for
such cases is much more complex and has not been pursued in this paper, which is concerned solely
with examining density profile effects. This means of course that refraction effects in the
sediment are not accounted for, and these often play a dominant role in underwater applications
because of the low grazing angles encountered in practice. However, previous work by the author
on fluid sediments [7] indicates that, in the frequency range for which the influence of the density
profile is important, the effects are of comparable magnitude in refracting and non-refracting
media. We might therefore expect any conclusions drawn from this study to be applicable in the
refracting case.

4. THREE LAYER MODEL

The solutions outlined in the previous section are used in a three‘layer model of ocean, sediment
and substrate. The upper layer is treated as a lossless fluid, the sediment as an inhomogeneous,
isovelocity solid and the substrate layer as a homogeneous solid. Losses are permitted in both
sediment and substrate. The sound field in the upper layer is composed of a downgoing incident
wave of unit amplitude and a reflected wave of amplitude IRl, where R is the reflection
coefficient. Transmitted P and S waves are present in the Substrate, while the sediment layer
contains both downward and'upward P and S waves. Thus in all there are seven wave components
generated by the incident wave. Their magnitudes are determined by' applying the usual
matching conditions at the sea/sediment and sediment/substrate interfaces, namely continuous
normal velocity and normal stress at both interfaces, continuous tangential velocity and
tangential stress at the lower interface, and zero tangential stress at the upper interface. The
resulting equations are solved numerically for' any prescribed grazing angle and wavenumber of
the incident wave.‘ ’ - ' f ' V ‘ _
Numerical results are presented in the following section this sediment whose density properties
are typical of a terrigenousdeep sea sediment [11]. The sediment' and substrate properties used are
shown in'Table 1 below." Sound speeds and densities are expressed as dimensionless values,
normalised ‘with respect to- water density and sound speed. The two density profiles considered
[given by a = 0and a = 0.519 in equation (3.1)] are plotted in Fig. 1. The ‘a = 0’ profile is a simple
exponential, while the “11-: 0.519"'pr-ofile reproduces realistically'the shape of a sediment density
profile as given in ref. 11. ' -‘ -' 3 "" ~ - 5' ' ‘ ' " '
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Sediment sound speed = 0.979
Substrate sound speed = 2.267
Shear speed/sound speed in sediment = 0.2
Shear speed/sound speed in substrate = 0.5

Pressure loss in sediment
Pressure loss in substrate
Shear loss in sediment
Shear loss in substrate

0.1 dB/wavelength
0.1 dB/wavelength
1.0 dB/wavelength
0.2 dB/wavelength

Tablel - SedimentandSubsu‘aterperties

5. NUMERICAL RESULTS

All reflection loss results in this section are presented as graphs of IRI versus grazing angle, at
fixed values of the dimensionless frequency given by koh = (oh/co, where h is sediment thickness

and c0 is the sound speed in the upper (water) layer. Evaluation of reflection loss for a range of

dimensionless frequencies shows a significant dependence on profile shape at low frequency, ‘
rapidly decreasing as frequency increases. Figures 2 and 3 compare reflection loss for the two
sediment density profiles of Fig. 1, at dimensionless frequencies of 2 and 8 respectively. We see
from Fig. 2 that there are significant differences, when koh = 2, at grazing angles above the critical

angle for shear wave generation in the substrate (28.1 degrees). The maximum difference is about
SdB. At this frequency the wavelength of sediment shear waves is the same order of magnitude as
the sediment thickness. In contrast, the effect of density profile shape is much reduced at the
higher frequency koh = 8 (Fig. 3). The decreasing importance of density profile shape with
increasing frequency is reflected in the coefficient of q in equation (2.15), which becomes
dominated by the terms proportional to to? as frequency increases. In Fig. 3 the range of grazing
angle over which differences are apparent is much reduced, with a maximum difference not
exceeding 4dB. This behaviour is similar to that observed with a fluid sediment and substrate [7],
where it was concluded that the density profile shape can have a significant effect, but only in the
frequency range where wavelengths are comparable with the thickness of the layer. Thus
differences in density gradient are important over a limited frequency range. However, it is not
permissible to ignore the density gradient completely - setting the density gradient to zero in the
sediment results in an incorrect value of p at the sediment/substrate interface, with a consequent
error in impedance at that boundary. This results in incorrect values of reflection loss over a
much wider frequency range. We would thus expect errors in R at any grazing angle for which
waves return from the lower interface. Fig. 4 compares reflection losses for the ‘a = 0.519’ density
profile and a constant density of 1.457, at koh = 30. Differences are apparent at all grazing angles

above about16 degrees. [The two density profiles of Fig. 1 give almost identical reflection loss
curves at this frequency, so no results have been plotted for the ‘a = 0’ profile]. We conclude from
Fig. 4 that any model of sediment properties must take into account the density variation across the
sediment if it is to be valid over a wide range of grazing angle. Density gradient can, however. be
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ignored at low grazing angles. This conclusion is consistent with that of Ref. 7 for fluid
sediments. ‘ '
Rutherford and Hawker’s study of fluid sediments [6] concluded that, at frequencies of practical
interest in underwater acoustics, it is sufficient to neglect density gradient terms in the equations
of motion, and simply to apply impedance matching conditions at each interface consistent with
the actual value of density at that interface. That is, they concluded that density variation effects
can be modelled successfully simply by ensuring that p is given its correct value at each boundary.
It is of interest to apply this technique for comparison with the present solution for solid sediments,
but the question has not been pursued in the present work. Naturally the method would not predict
reflection loss correctly at low frequency, where profile shape effects are important.

. The effect of neglecting sediment shear strength is illustrated in Fig. 5, which compares reflection
loss' for a solid sediment and a fluid sediment. The density profile is the ‘a = 0.519' profile'of Fig. 1
in each case, and the frequency is koh = 30. At grazing angles above the critical angle for
generation of P waves in the substrate (63.8 degrees) the two curves are indistinguishable
(reflection loss being dominated by transmission of a P wave into the substrate), but the differences
at smaller angles are comparable with the‘ differences induced by neglecting the density gradient
(Fig. 4). As in Fig. 4, these differences are attributed to differences in impedance at the sediment
boundaries. ,
Finally, Fig. 6 compares a SAFARI prediction with the analytical solution, for a dimensionless
frequency of 10. In this case the shear wave speed has been set to half the sound speed in both
sediment and substrate. The sediment layer was represented by 20 homogeneous sublayers for the
SAFARI prediction. The two curves are seen to be indistinguishable except for grazing angles in
the range 35 to 50 degrees. The use of a discretised profile is therefore adequate provided a large
enough number of sublayers is used. As the, frequency is increased one would expect to have to use
an increasingly fine discretisation to get a satisfactory result.

6. CONCLUSIONS

By assuming that the shear modulus of an inhomogeneous solid layer is small in relation to its
bulk modulus, and that shear speed gradient may be neglected, it has been possible to reduce the
equations of motion to a relatively simple form that clearly illustrates the conversion of P to S
waves due to density gradient effects. The introduction of appropriate new variables transforms
the equations to a form amenable to analytical treatment. The use of a ‘sech squared’ density
profile and the assumption of an isovelocity sediment results in analytical solutions, which are
straightforward to evaluate numerically. The existence of exact solutions is useful ingenabling
density profile effects to be examined without recourse to the discretised profiles employed in
general numerical models such as SAFARI. ' ‘
It has been demonstrated that differences in density profile shape can have a significant effect at
low frequencies, where‘wavelengths are of the same order of magnitude as the thickness of the
sediment. At higher frequencies the profile shape becomes much less important, although it is still
necessary to represent the density variation within the layer so that impedance matching is done
correctly at the sediment/substrate interface. This conclusion was also reached by Rutherford and
Hawker [6] and Robins [7] in studies ofan inhomogeneous fluid layer. For grazing angles below
the critical value for generation of P waves in the substrate, neglect of density gradient can have
similar magnitude effects on reflection loss as neglecting the sediment shear strength.
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  At frequencies of practical interest in underwater acoustics, Rutherford and Hawker have

suggested that it is sufficient to characterise a sediment’s density properties simply in terms of the

density values at top and bottom of the layer, ensuring correct impedance matching at the
sea/sediment and sediment/substrate interfaces. A future study will compare solutions obtained

using that method with the present analytical solutions for a range of sediment properties, with the

aim of determining the conditions in which the simple impedance matching procedure may be

used.
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