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RBISSN'KR'S HIED METHOD IN DYNAMIC“. PROBLEMS

by

A J Sobey

Finite element methods which have been developed for the solution of
vibration problems have, in the main, been based upon the principle
of minimum potential emery. As such they follow the classical
treament of nits in synthesising the displacement field by the
representation in terms of suitable base functions. The load field
is obtained by first computing the strains from the displacement
field and then using the elastic stress-strain relations for the
material. Boundary conditions on displacement are satisfied where
essential and often the eddiidoual ones are satisfied whenever it is
practicable to do so.

Solutions of mmerous problems have beenobtained with such methods

and are found to be satisfactory. There are, however, some problems
where the processes shunble. Consider, for example, the vibration
of a plate which has a rapid change of stress in an area where the
displacements vary smoothly and in a limited way. Such a case
occurs if the plate has a hole, which may well occupy a significant
proportion of the plate, or where the supports exert total (or
large) restraint against rotation as with a swept cantilever plate
in transverse vibration. In such cases, the use of displacement
methods requires careml handling.

One way out of the ounputational difficulty is to let the element

site reduce whilst keeping unchanged the manner in which the dis—
placement field is specified within the element. Alternatively, the
displacement field can be represented by higher order terms capable
of generating a load field which has the necessary rapidity of
change needed to cater for the region of concentration.

It can be noted, however, that in problems of this type, that the
description of the elastic system by handing stresses only may be

suspect and the secondary stresses transverse shears) could have a

significant influence on the stress displacement fields. Transverse
shear effects are not easily accounted for in a displacement system
and even in the relatively easier problems of static elasticity, the
use of an engineer's type of bending theory based on a displacement

system of given type is not prudent.

Apart from the pioneer work of Timoshenko on the influence of

secondary stresses (and rotary inertia) on beam vibration, where the
one dimensional character of the analysis is preserved by the use of

a shear coefficient, the existence of significant secondary stresses
is hard to include in a displacement system. loads based on simple

deflections which are at variance with boundaryconditions would be
discredited, so that the transverse shear strains computed from a
Timoshenko type analysis are not reliable. The shear coefficient is

an expedient used to gloss over this feature.

 



  

A second class of problems in which practical difficulties arise, but

for a different reason, is that relating to systems with a compound
stiffness. Consider, for example, the problem of determining the
modes of a rotating beam. Part of the potential energy of the system
arises from flexure against elastic restraint, in the usual way,
whilst the remainder is due to flexure against the centrifugal field.
For a pinned. beam, with the practical dimensions and rotational speed
of a helicopter blade, the elastic forces are small compared with the
centrifugal ones in the lower order modes. As a result, the mode
shape will be close to that of a rotating chain and in particular the
fundamental flapping motion Will be almost linear with radius. As a
consequence, the load distribution due to the flexure (albeit small)
will be very difficult to analyse by adisplacement method.

Such difficulties as are common in both classes of problem cited arise
from the inability of relatively uncomplicated expressions to repre—
sent a displacement field which varies only mildlyfrom a geometric-
ally simple form and whose higher derivatives contain the significant
load information. Similar difficulties arise in static elasticity
and proved obstinate to analyse either by the method of virtual
forces or the method of virtual displacements.

Latterly, however, an attempt has been made to approximate both the
load and displacement fields independently of each other, using
Reissner's variational theorem. This states that the variation of a
suitable functional can lead to the equations of equilibrium and the
stress-strain relations as stationary conditions. Formally we have
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where d". are direct stresses,‘t.‘ _. shear stresses, . .. direct strains,1, M4 ) W I

(Ian‘shaar strains, F--',proscribed surface stresses over part
31 of boundary, u,.. displacements and V enclosed volume.

Several novel and accurate apprmdmate solutions to problems not
characterised by the domination of the elastic behaviour by primary
stresses have followed from Reissner's theorem. By way of illustra-
tions, Raissner has shown how the effect of transverse shear stresses
may be taken with account in the flaxure of plates and an interesting

study of the non-uniform torsion of cylindrical rods. In the latter
case, the flexibility of solutioa when both stress and displacement
fields may be varied is seen to stflung advantage.

If, in the Reisanar variational theorem, we allow continuous variation
of the load field and impose no restriction whatsoever on its
behaviour, than the statiouary conditions generate the classical dis-
placement analysis with the governing relationsnormally obtained by
Newtonian methods. mch indeterminacy in the stresses fails to
exploit the potential of the Reissner method and it is generally
advantageous in seeking approximate solutions to represent stress and
displacement fields by suitable functions which do not violate too
severely the stress-strain relations. In this way, econuny is
combined with reasonable accuracy.

In dynamical problems, we may use either the quasi-static concept in
which the structure is loaded inertially, or we may invoke Hamilton's
principle, using the Reissmer integral as potential energy function.
For conservative systems, the two procedures will reduce to the same
resulting form.

In finite element applications we may use the variational principle
to determine the load and displacement fields by prescribing the load
and displacement variation within an element and using the variational

method to find the interface values of the unknown load and displace-

ment parameters.

 



   

  

A sketch follows of the mixed method applied to the problem of the
determination of the normal modes of a rotating beam. If w is the
deflection of a blade element at radius r parallel to the axis of
rotation, In the blade mass per unit span, EI the flapping stiffness
of the blade 1‘ the tension in the blade at radius r, and .5}. the
angular velocity of the blade,
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It is easily shown by Newtonian methods that the equation of motion
when the blade is constrained to flap only is
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for a blade hinged st 1- = r0 and having the tip :- = R free of stress.

Solutions of this system, which is a classical eigenvalue problem
can be obtained by avariety of approximate processes, of which one
of the most suitable is that of Wadsworth and Wilde.

A finite element approach based on Reissner's principle follows.. If
the blade defamation is governed by primary bending stresses only,

a". = M 9/51

where .‘ is the distance of a blade fibre from the neutral axis in
bending and M is the resultant bending moment in the blade. The
strains are . of,

r =‘ —— I7
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and in this case we do notpresume, ab initio, that l = 31 W/M'
M and w are to be thought of as independent functions which will
be tied together through the stationary properties of the appro-
priate functional.

By integration using the Reissner integral across the beam section,
the modified Lagrangian in this case is found to be
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so that Hamilton's principle gives
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Allowing K and I! to be Arbitrary functions of spans-time, subject
only to the essential boundary conditions we find
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Since 3»! and 3M are arbitrary functions of r,t within the limits, we
re ire bothq“ -nyw +LLT1w)_m :
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Suppose, now, we restrict I, w to be harmonic mmtions of time
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The single integals in Hamilton's principle will all vanish if in

addition to boundary conditions on w, L! we take t1 = 0, t2 = 21f .

The integral is than reduced to one in the radial coordinate Only
and the new form of the variational afiuation is
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As it stands this vodationel equation could he used as the basis

of a (single finite element method, but whilst the process miyat be

made to work, it is pointless to try to do so when partitioning the

structure into a number of discrete elements affords more profitable

use of computer space.

Divide the beam into N arbitrary elements. The load field is

specified completely by the bending moment distribution. The dis-

placements and _the bending munsnts can be defined in any convenient

way subject to certain oontimity conditions at the interfaces. I!

w end I! and their first derivatives (slope and shear fome) are
all made continuous (a condition severer than is needed to ensure a

proper variational condition) then the simplest interpolative rule

within on element is to fit third order (cubic) polynomials in r
for I and w.

For the hinged beam, the variational process leads to a matrix

equation of rder LN which splits into [’11 - 0112 = 0 and

0a,. o(n- 8)q2=0
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where Kr end It are the interface values of It and w between the rth

and (r + 1 )th element, and primes denote redial derivatives.

The system properly of order l+N condenses into one of order 2" + 1

by elimination of :11 giving the homogeneous system for qe of the

hm [13+Q‘P"Q— 35].:uro

Here P is a symmetric positive definite matrix derived from beam

stiffness tems, Q is a general matrix derived from the (ldzw/dzz)
variation, 2 derives from centrifugal stiffness and is symmetric

positive definite and S is the inertia matrix.

The reduced equation for qz has positive definite matriees in

(R 4 Q' P-dQ) and 3 and so leads to 2" +1ree1 values of In, as is
to be expected for a conservative system.

Numerical illustrations will be presented at the lecture.

The method is seen at its most potent in situations where the

conditions are more ounplex than the one dimensional one used for

illustration, and an of the introductory examples would be solved ‘

readily by the use of independent load and displacement fields.

The method does, however, possess one disadvantage which oaspares

unfavourany with the Mt: prooess. The stationary condition

arising from Hamilton's principle using the Reissner representa-

tlon of elastic energy is not extreme and so the error in the

eigenvalues is of indeterminate sign. In the Ritz process we

always overestimate the frequencies and are assured of the sign,

if not the magnitude of the error, in the mixed method we are sure

of neither.

  


