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REISSNER'S MIEED METHOD IN DYNAMICAL PROBLEMS

by
A J Sobey

Finite element methods which have been developed for the solution of
vibration problems have, in the main, been based upon the principle
of minimum potential energy. As such they follow the e¢lassicel
treatment of Ritz in synthesising the diaplacement Pield by the
representation in terms of suitable base funotions, The load fleld
13 obtaeined by first computing the strains from the displacement
field and then using the elastlec stress-strain relations for the
material, Boundary conditions on displacement are satisfled where
assential and often the additional ones are satisfled whenever it is
practicable to de so,

Soluticneg of mumerous problems have been obtained with sush methods
and ere found to be satisfactory, There ara, however, soms problems
where the processes stumble., Consider, for example, the vibration
of & plate which has a rapid change of gtress in an ares whare the
displacements vary smoothly and in a limited way, Such a case
coours if the plate has a hole, whioch may well cooupy a slgnificant
proportion of the plate, or where the supports exert total (or
large} restraint agalnst rotation as with a swept cantilever plate
in tranaverse vibration. In such cases, ths uss of diasplacement
methods requires careful handling.

One way out of the computational dlffioulty is to let the element
size reduce whilat keeping unchanged the manner in whioch the &ia-
placement field is specified within the element., Altermatively, the
displacement field can be represented by higher order terms capable
of generating a load field which has the necessary rapidity of
change neoded to cater for the region of concentration,

It can be noted, however, that in problems of this type, that the
description of the elastio syatem by bending atresses only may be
suapect and the secondary atreesses (tranaverse shears) could have a
signifioent influence on the stress/displecemsnt fields, Transverss
ghear effects are not sasily aocccunted for in a displacemsnt system
and even in tha relatively easier problems of atatlc elasticity, the
use of an engineer's type of bending theory based on a diasplacement
system of glven type is not prudent,

Apart from the pioneer work of Timoshenko on the influence of
sscondary stresses (and rotary inertia) on besm vibration, whers the
one imensional character of the anslysias is preserved by the use of
a shear coefficient, the existence of significant secondary stroessea
is hard to inoclude in & displacement system. Loads based on simple
deflections which are at variance with boundary conditions would be
discredited, so that the transverse shear strains oomputed from a
Timoshenko type analysis are not relisble, The shear coefficlent is
an expedient used to gloss over this feature.



A second class of problems in which practical difficulties arise, but
for a different reason, is that relating to systems with a compound
stiffness. Conslder, for example, the problem of determining the
modes of a rotating beam, Part of the potential energy of the system
arigeg from flexure ageinst elestic restralnt, in the usual way,
whilst the remainder is due to flexure agsinst the centrifugal field.
For =z pinned beam, with the practical dimensions and rotational speed
of a helicopter blade, the elastic forces are small compared with the
centrifugal ones in the lower order modes. As a result, the mode
shape will be close to that of a rotating chain and in particular the
fundamental flapping motion will be almost linear with radius. As a
consequence, the load distribution due to the flexure (albeit small)
will be very difficult to analyse by a displacement method.

Such difficulties as are comson in both classes of problem ¢cited arise
from the inability of relatively uncomplicated expressions to repre-
sent a displacement field which varies only mildly from a geometric-
ally simple form and whose higher derlvatives c¢ontain the significant
load information, &Similar difficulties arise in static elasticity
and proved obstingte to analyse either by the method of virtual
forces or the method of virtuel displacements.

Latterly, however, an sttempt has been maede to approximate both the
load and displacement flelds independently of each other, using

Relasner's variestional theorem., This states that the variation of a
suitable functional c¢an lead to the equations of equilibrium and the
stress-atrain relations as stationary conditions, Formally we have
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where o;",are direct stre?fas,‘l'.',.!_. , 8hear streaaes,c'y..,direot strains,

EH..,ahear strains, Px--,prescribed surface stresses over part
31 of boundary, u,.,, displacements and V enclosed volume.

Several novel and accurate approxdmate solutions to problems not
characteriged by the domination of the elastic behaviour by primary
stresses have followed from Reiasner's theorem. By weay of illustra=-
tions, Rolasner has shown how the effect of transverse shear stresses
may be teken with sccount in the flexure of plates and an interesting
gtudy of the non-uniform torsion eof cylindrical rods, 1In the latter
case, the flexibility of sclution when both stress and displacement
fields may be varled is seen to strildng advantaga.

If, in the Relssner variational theorem, we allow continucus varlation
of the load field and impose no restriction whatscever on its
bohaviour, then the stationary conditions generate the classical dis-
Placement analysis with the governing relations normally obtained by
Newtonian methods, Such indeterminacy in the stresses fails to
exploit the potential of the Relssner method and it is generally L
advantageocus in seeking approximate selutlons to represent stress and
displacement fields by suitable functions which do not violate too
severely the stress-strain relations, In this way, economy 13
combined with reasonable accuracy,

In dynamical problems, we may use either the quasli-static concept in

which the structure is loaded inertially, or we may invoke Hamilton's
prineciple, using the Reissner integral as potential energy function,

PFor conservative systema, the two procedures will reduce to the same

resulting form,

In finite element applications we may use the vaeriational prineiple

to determine the load end displacement fielda by preascriblng the load
and dlsplacement variation within an slement and using the variational
method to find the interface values of the unknown load and displace-
ment parameters,




A sketch follows of the mixed method applied to the problem of the
determination of the normal modes of a rotating beam., IFf w 13 the
deflection of a blade element at radius r parallel to the axis of
rotation, m the blade mass per unit span, EI the flapping stiffness
of the blade T the tension in the blade at radius r, end . the
angular velocity of the blade, .
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It 15 easily shown by Newtonian methods that the equation of motion
when the blade is congtrained to f‘lap only is
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for a blade hinged at r = ro and having the tip r = R free of streas,

Solutions of this system, which is a classical eigenvalue problem
can be gbtained by a varlety of approximate processes, of which one
of the most suitable is thet of Wadsworth and Wilde,

A Finite element appreach based on Reiassner's prineiple follows.. If
the blade deformation is governed by primary bending stresses only,
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4 whare ] is the distance of & blade fibre from the neutral axis in

bending and M is the resultant bending moment in the blade. The
straeins are b‘
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and in this case we do not presume, ab initio, that M = EI 3""/5"
M and w are to be thought of as independent funetions which will
be tied together through the stationary propertles of the appro-
priate functional,

By integration using the Relssner int:.agral across the beam section,
the modified Lagrangian in this case is found to be
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AMlowing M and ® to be &r‘b:l.trary functions of spase-time, subjeot
only to the essentlal ‘bwndar:,r conditions we find
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Since Sw and 2 are arbitra:ry funations of r,t within the Mmits, we
require both
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Suppoas, now, we restrict M, w to be harmonic functiona of time
M(fE) = A OE M() w(nt) =4 wb wir),

The single integrels in Hamilton's prinelple will all vanlsh if in

addition to boundary conditions on w, M we take t1 = 0, tz = 2T,

The integral is then reduced to one in the redial cocrdinate oniy
and the new form of the variaticnal equation is
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As 1t ztands, this varlational equation could be used as the basis
of & (Eingleﬁ finite element method, but whilat the process might be
made to work, it is pointless to try to do so when partitioning the
structure into a number of discrete elements affords more profitable
uae of computer space,

Ilvide the beam into N arbitrary elements, The load field is
specified completely by the bending mement distritution, The dia-
placements and the bending moments can be defined in any convenient
way subject to ceriain contimity conditions at the interfaces, If
w and M end thelr Pirst derivatives (slope and shear foroe) are
all made contimious {a condition severer than is needed to ensure a
proper veriational condition) then the simplest interpolative rule
within an element is to fit third order (cubic) polynomials in r
for M and w,

Por the hinged beam, the varistional process leads to a matrix
equation ofwgrder 4LN which splits inte Pq_' - qu =0 and
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where l(r and w_ are the interface valuss of M and w between the rth
and {r + 1)th element, and primes denote redial derivatlves,

The system properly of order 4N condenses into one of order ZN 4+ 1
by elimination of q, glving ths homogeneous system for 9% of the

form [E+GIP-IQ_ dsquto

Here P is a symmetrio positive definite matrix derived from _bomm
stiffnesas terms, Q is a general matrix derived from the (ldzw/drz)
variation, B derives from centrifugal stiffnsss and is symmetrio
positive definite and 8 13 ths inertis matrix.

The reduced equation for q2 has pogitive definite matrices in

(R + Q' FQ) and S and so leads to 2N + 1 real values of w, as 18

to be expected for a conparvative system.
Nmerioel 11lustrstions will be presented at the leoture.

The method is seen at 1tas most potent in situmtions where the
conditions are more camplex than the one dimensional one used for
11lustration, and all of the introductory examples would be solved
readily by the use of independent load and dlsplacement flelds.

The method does, however, possess ons disadvantage which comparss
unfavourably with the Ritz proseas. The stationary condition
arliging from Hamilton's principle using the Relasner representa-
tlon of slastlc energy is not extreme and s¢ the error in the
eigenvalues 1s of indaterminate sign. In the Ritz process we
always overestimate the freguencies and are assured of the signm,
if net the magnitude of the error, in the mixed method we are sura
of nelther,




