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ABSTRACT

We present a technique for extracting information from signal traces that takes into
account the sha e characteristics of events in the signal, as much as the values taken by the
si nal. The tecIEnique derives statistically motivate object-descriptions which are
su sequentg (apen to expert human inspection. The approach aims to provide knowledge-
based spec eooding strategies with a sound basis; or conversely to provide statistical
techniques with more transparent and flexible representation units.

I. INTRODUCTION TO HYBRID RECOGNISERS

Statistical pattern-matching and knowledge-based techni ues for acoustic-phonetic
decoding he at o posite ends of a spectrum of possible by rid approaches, which has
largely remaine unexplored. Allerhand‘s wor [1] is one hybrid example deserving
attention. A resent trend is to automate the threshold settings of knowledge-based
algorithms [Zror to predicate the variability of stochastic class1fiers over models whose
internal structure has been influenced to some extent by aprian' s eech knowledge [3 . The
large gap remaining between these approaches reflects the consi erable difficulty in rnding
a common ground which is both representationally sound (preserving what a phonetician
views as ' ortant) and stochastically admissible (preserving the virtue of optimal training
procedures .

In outline, our hybrid approach seeks to develop a hierarchical model which preserves
stochast admissibilityt rough all levels of representation. Our starting point is a set of
parameter traces. Alparameter trace is a time-varying signal, usually computed from a
pressure waveform, t at makes some aspect of speech explicrL such as its noisiness, or
overall ener . Our premise is that salient acoustic events or acoustic object: may be
detected in t ese traces. that fall into distinct classes governed by the phonology of English.
The first stage of our task is to determine the optimal set of acoustic events that adequately
describe the behaviour of given parameter traces. The second stage is to relate these
events to a syllable model of English phonology. The rest of this paper describes progress
made in the first of these two stages.

Our model for extracting information is based on a straightforward physical description of a
trace in terms of its magnitude. rate of change and non-stationarity. A finite state machine
is used to construct a probabilistic matrix of most likely topological event sequences, from
which candidate object templates (isomorphic shapes) ma be selected for further
investigation. Deterministic algorithms are then evised or extracting instances of each
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object, in order of greatest significance. Each object is a parameterised description of the

magnitude behaviour of the trace over some extended time interval. Various numerical
features and distances ma be measured in each object, from an object—centred perspective.
Objects are clustered on t e basis of these features, until an optimal class separation is
achieved with respect to a distance metric. .

2. DETECTING OBJECTS IN SPEECH PARAMETER TRACES

The human eye and mind are quite expert at organising visual information. such as that

presented by a speech signal trace. For example, a good subset of all liable nuclei are
readily estimated from peaks observable in signal amplitude traces or oudness functions

[4]; strident fricatives and noise bursts associated with strident plosives are readily
detectable from plateaux and spikes visible in high frequency bandpass energy traces.

Intuitively, evens such as peaks, di 5 and shoulders in traces are seen as significant objects
because of the Gestalt properties ( ] of the geometric forms they describe. A peak or a
plateau, a dip or a valley may somehow be Viewed as an ’excurston' against a background
evel which is subsequently ’completed‘ by the returning trace. Small perturbations are not
significant where the overall shape is undisturbed; however there are clearly trading

re ations between competing interpretations of some shapes. Notions of similarity,
fwniliariry, closure. belongingners, good continuation and common fate are obvious candidate

principles from Gestalt psychology to apply to this phenomenon.

The problem of detecting robust classes of object in parameter traces is essentially one of
available knowledge. If, on the one hand, you know what the answer categories are, then
you can optimise over the training data to distinguish between these classes (cf factor
analysis). This is how current pattem-classificatton approaches to speech recognition work.

If, on the other hand, you know what the salient features in your signal are, then you can
group these by distance metrics into classes of object (cf cluster analysis). This is one of the
approaches adopted by the knowledge-based school. We are starting from a position where
we do not wish to prejudge the answer categories or the feature set to be measured.

3. DESCRIBING THE BEHAVIOUR OF PARAMETER TRACES

We adopted a model which views a trace sim‘pl’ as a time-varying magnitude signal.
(Different traces measure their ordinates in i ferent scales, such as am litude, frequen ,
zero crossing rate per lOms; we Peneralise this to a notion of magnitude . We consrder t at
the most important indicators 0 a trace’s behaviour over time are its first and second
derivatives. This is in keeping with our current consideration of traces as simple physical
phenomena. Also, we compared our derivative-based scheme against several segmentation "

methods, including iecewtse constant and piecewise linear regression [6], hierarchical 1]
and curvature~basegsegment-fitting methods [7]; and an original clusterin scheme. e
preferred the derivativ -based schemefor its greater robustness across sca es and greater

sensitivity in locating important acoustic boundaries.
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The first derivative is the rate of change of the trace with respect to time. Extrema in the
first derivative correspond to points at which the trace is moving most rapidly. The trace
was most likely to be segmented at these points by those of our previous techniques which
grouped or clustered on the basis of the trace’s magnitude. It is chea er to pick extrema
ere than to cluster the trace into similar regions in order to find the undaries.

The second derivative is a measure of the non-stationarity of the trace over time. Extrema
in the second derivative correspond to points at which the trace commences, or terminates
an excursion. The trace wa most like] to be segmented at these points by those of our
previous techniques which fitted strai t line approximations to the si rial, especially those
techniques using interpolation error rather than least squares error. e former
emphasises the error at bre ints, whereas the latter emphasises the error over whole
segments. It is cheaper to pic extrema here than to fit line segments to the trace in order
to find breakpoints. \

The first and second derivatives of traces were calculated using a standard method. A good
approximation to the derivatives of an em iricai signal may be achieved by convolving the
signal with the analytic derivatives of the aussian. The formulae used were:

Derivl(i) = - G’(:.n) ' To")

Den'v2(i) = G”(:.n) ‘ Tfi)

where ‘ denotes convolution, G’(s,n) and G”(:,n) are the first and second derivatives of a
Gaussian curve of standard deviation 5 5am led over 71 points, T(i') is the ith sample of trace
T. In practice, the size ofn was determine by the size oh, the standard deviation
(typicall 2 - 4 samples). We ado ted a convention of sampling over -3.t to +3: (although
less wou d probably have been a equate); ie n = 6': + 1 points. This corresponds to
sampling the Gaussian over approxtmately 99.9% of its area.

The positive and negative extrema of the trace, its first and second derivatives were then
extracted using a peak-pickin al oritlim which discarded a fraction of low-scoring peaks
(typically, these were ints t at ailed to score as maxima or minima for more than 25% of
the peak-picking win ow’s passage). A label was generated for each extremum, at which
point the trace and its derivatives were sampled, producing a data triple. (These enremum
events were considered key points in the evolution of the behaviour of the trace). The size
of the peak-picking window was directly related to the scale of the Gaussian convolution
operator.

4. FINITE STATE MACHINES FOR LEARNING OBJECI‘ TOPOLOGY

Our approach describes the commonality of shape shared by different trace events, rather
than re ying on simple threshold [8]. or excursion-based [9] measurements. Furthermore,
we select 5: nificant classes of shape from an automatic examination of the data. Initially,
we model e sequence oiextremum events in a finite state network, calculating the It most
probable paths through this network, then filtering the resulting extrema sequences. A
single sequence of extremum labels describes a set of topologically identical objects.
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Two networks were constructed. corresponding to bi~gram and tri-gram models of
conditioning. The bi-gram model assumed each state in sequence was conditioned by the
previous one alone and contained one node for each extremum type from the set:

Nodes = (sigma); .tigmin. demwc dxlmin, dx2max, dx2min)

The tri-gratn model assumed that each state in sequence was conditioned by the previous

two states..This ap roach factored out the contextual occurrences of second derivative
extrema, discovere using the first model. Nodes were now drawn from the set:

Node: = {dXme-dxlmax, ir2max-dx2min, .tigmm—ermt‘n}

Constructed in this wa , the network had a theoretical possible maximum 62 = 36 nodes (ie

the cross roduct of al six extremum labels), but in practice only half the nodes from the
cross pro uct set actually occurred in the data. This was already good evidence of the
strong constraint provided by immediate context.

Each network was built simply by recording transitions from one node to another, as
observed during multiple passes through a set of data. Note that, at this point, only the
qualitative shape information was being used, not the numerical values associated with
each data triple.

The network was then explored using a beam searching technique based on a branch-and-
bound al‘glorithm with residual pruning. The algorithm constructed a queue of partial aths
through e network. starting (on each pass) from one named node and aimin to finis at
another natned node. The partial aths were sorted according to the total pro ability of
traversing the path; in this sense, t e solution paths were returned in order of maximum
likelihood. Al paths over aresidual likelihood (by default, 1%) were returned. but this
limit could be raised dynamically (by 0.5%) in response to imminent memory exhaustion.
Partial paths scoring less than the limit were pmned from the queue. Solution paths were
maintained on the queue so that they might be further extended.

The results from this processin were extremely satisfactory from the point of view that they
both confirmed intuitive mode 5 of shape behaviour and revealed aspects of behaviour that
were not immediately apparent to a human observer. The results can be summarised by
stating that all the variants of expected topologies were eventually generated. but that
simpler descriptions of pans of these were found to occur more frequently. The following
results are typical of ‘positive excursion‘ traces:

' The reatest number of extrema arise (by definition) from the second derivative
signafi. The small increase in minima over maxima can be explained by the fact that

trace onset behaviour is typically more abntpt (rising in one step) than offset
behaviour (descending in multiple steps).

The most robable event sequences delimited b maxima in the second derivative

(ie excurston breakpomls) are therefore peak-o fsets. These are portions from the

last rise before the signal maximum, then the complete fall encompassing a first
derivative minimum up to the arrest of this fall.
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Various canonical peaks and dips feature in the middle range of probabilities. Some
of these are very similar, all but for the omission, insertion or substitution of one
extremum labe .

Unexpected topologies also feature in the middle range; eg the quiescent portion
between two positive excursxons of the trace, or stepped onsets ( shoulders’). These
novel descriptions reflect behavioural characteristics of the type of trace on which
the network was trained (eg amplitude).

‘ Multi le~peaked topologies feature in the low-scoring range. This is to be expected,
oonsi ering the natural ias against constructing longer paths through the network.

The notion of the pmbabilior, or likelith of each topological sequence needs elucidating.
This does not re resent the robability of such an object occurring in the data; rather it
represents the li elihood of abelling any suchsequence of data with a model of that
topological complaily, given no information about the kinds of shape which are deemed
interesting. As we saw, simple models are naturally preferred over more complex ones.
The network embodies the Gestalt constraint of rimtlariry. in a topological sense.

5. DETERMINISTIC ALGORITHMS FOR DETECTING OBJECTS

It is possible, by virtue of the connections existing in the network, to generate longer
sequences which never actually occur in the data. All generated topologies were therefore
filtered according to likelihood of occurrence of each event sequence in the data. This
reduced topological 'noise’ b 50—70%. Canonical, novel and multi-peaked shapes scored
highly out is pass. Thus. i urination was gained about:

a the most reasonable descriptions of sha e;
b the most likely shapes occurring in the ata.

The next stage was to cluster examples of matched shapes in the data. A d namic
programmin algorithm clustered similar topologies (at increasing cost); w ile a euclidean
metric base on the magnitude and duration of excursions was used to split the classes so
derived. A problem encountered here was the inability to equate the cost of an insertion,
deletion or substitution in the DP algorithm with the distance metric of the clusterer.

For this reason, we eventually decided to introduce some stron er assumptions into our
model. Given that speech is a se uence of events of some kin , ’complete’ events should
be deterrniuable from the overall haviour of the trace’s first derivative. However, the
second derivative marks the start and end of excursion points. On this basis, we
constructed a detemtinistic algorithm that matched trace onsets against offsetsI allowing the
most complete wholes (the Gestalt constraint of closure) to influence our segmentation of
the trace into a hierarchy of events.

The a] orithm is a function of two parameters: an absolute constraint ratio linking maxima
and minima in the first derivative and a decaying window function, within which a match
must be found. The first parameter represents how strong an offset you would consider
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sufficient to complete the event started by the onset. A figure of 50% (a maximum entropy
decision) was found to agree with visual Judgements for detecting positive excursion events.
The second p/arameter re resents how long301: are pre ared to wait for an event to be
completed. arious simp e and complicate functions at decayed in around 300ms (the
longest expected acoustic event) were used successfully. The algorithm may be used to
match offsets to onsets in a forward pass, or onsets to offsets in a backward pass. In
forward mode, it may be described approximately as follows:

Select the next largest dxlmax at dx1(i);
Start : i;
End i;
Onset = dx1(i);
Limit ratio ‘ Onset;
Offset 1: Limit;

While (dx1(i) > win(i,IJntit)) and (win(i,Limit) < 0) do
Select the next dxlmtn at dx1(i+k);

Ifdxl(i+k) < dx1(i) then

  

End := i+k;
Offset := dxl(i+k);

i:= i+k:
Record matching onset and offset from Start to End:

Duration := (End - Start);
Closure := f(0nset. Offset).

The algorithm detects complete eak- or di -events in traces. It is not confused by small
penur ations, which give multip e peaks, w ere the Overall shape is robust (closure roves
to be a more sensitive constraint than just modelling topology). It degrades gracefu 1y. by
returning eventsin order of greatest prominence. It is ierarchical, in that multi le onsets
may eventually be matched against one offset in forward mode, vice-versa in bac ard
mode. A further process detaches peak/dip figures from the back ound in order of
greatest closure. leaving shoulder events, correspondin to steppe onsets or offsets, and
quiescent events. This models the Gestalt constraint 0 belongthgness (uni ue association of
components to wholes). Excursion-points are used to delimit object boun aries.

6. CLUSTERING ALGORITHMS FOR DETERMINING CIASSES OF OBJECT

Numerical features approp‘lrltate to each topological type of ohfl'ect are measured, for
complete sets of objects. ese are submitted to a standard c ustering algorithm. The aim
here is to obtain multiple classes of acoustic event, where each class is determined by its
internal consistency and differs sufficiently from other classes. Clustering embodies the
Gestalt constraint of similarly in a quantitative sense, allowing many small factors to
contribute to the whole. We have concentrated mainly on clustering peak events in
amplitude and zero-crossing traces. Peak features were chosen at random from the set:

Peakl-‘eamms = (duration, area, Iog_area, max_mag, rel_mag. avg_mag. onset, ofl'set, closure}

and clusters were evaluated with respect to a fine acoustic hand—labelling of events in

230 Proc.l.o.A. Vol 12 Part 10

  



 

Proceedings of the Institute of Acoustics

0N FINDING OBJECTS IN SPEECH SIGNALS

'traces. The most reasonable clusters are obtained using features that characterise the

extremes of behavtour, e (duration, max_mag, onset), rather than those that tend to

average the qualitative s ape of peaks.

Two variants of the clustering algorithm were tested. The first, standard version,

normalised distances in each dimension with respect to the total sample variance for that

dimension: and used normalised euclidean distance as its cumulative cost-function. The

second version normalised distances with respect to a pooled estimate of the variances of

the two classes about to be merged. The increase in actual variance Over the estimate was

used as an indicator of the increase in entropy caused by merging the classes.

We are currently considering two methods for halting the clustering: one uses heuristics to

pick the first sharp increase to the cost-function [1]I and the other evaluates the cluster-tree

against the fine acoustic labels to obtain the best g obal class~to~label correspondence.

7. EFFECTIVENESS OF THE METHOD

We have described a method for detecting objects in ararneter traces, using weak

assumptions. In an example run, the processes descriged here extracted separate statistical

class models of alt-events corresponding to syllable-initial 5/, aspirated /t/. strongly-
aspirated /t/, sy able-final sh/, utterance-final [sh], weak- ritmive and voice-peak from a

simple zero—crossin trace. a test of our ability to replicate human perce tion, two

subjects were aske to choose five events in order of 'ap arent significance from the same

trace. The suh'ects and the object-detection algorithm c use the same five events; in one

case the ordering was different for the alfiorithm. The sub'ects weighted their choice by the

area under the trace. whereas the algorit rn weighted its c oioe by abmptness of onset.
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Preliminaries to a New Text-to-Speech Synthesis System

Marcel Tatham

University of Essex, Colchester

Introduction

This paper describes some of the thinking behind the design of a new text-to-speech synthesis
system. and informally discusses decisions based on pilot studies for the system. The system
concerned is the focus of the recently begun SPRUCE Project, the outcome ofwhich is to be a
demonstrator of text-to-speech synthesis whose output is more natural sounding than anything
so far achieved on a consistent basis. The scheme incorporates several innovations, some ofwhich
are mentioned below, but also careful reworlcings of earlier ideas.2

Various pilot studies of aspects of the design of the system have been carried out over the past
two or three years in the Advanced Speech Technology Laboratory at Essex University. The task
facing SPRUCE over the next few years is to put together existing pieces of the experimental
scheme, and integrate them into a robust whole. Here I shall be discussing some of the aims of
the Project, and how these mightsatisfy the needs that have arisen as the demand for voice output
devices grows. A major point will be the basic philosophy of the system, and how some of the
shortcomings of existing text-to-speech synthesisers will be met.

Cui-rent text-to-speech synthesis

Current text-to-speech synthesis systems are nearing the theoretical limits of their ability to
produce high quality speech output. A strong commonality of feeling exists among researchers
which is expressed in the frustration they share that text-to-speech synthesis is almost good
enough to satisfy the demands repeatedly made over the past two decades or so for acceptable
voice output devices, but not quite good enough to result in any significant uptake by potential
users. We have here a classical case of a miss being as good as a mile — almost good enough is not
good enough. For the researcher the results are scalar and each small improvement is seen as
significant, but for the user or the marketplace the situation is binary: text~to-speech synthesis
either works or it does not. The sad story is that it does not. For SPRUCE to be a worthwhile
project and not just a small refinement ofsome existing system there had to be serious consider-
ation ofwhy results so far had not been entirely successful.

Available text-to-speech synthesis systems have a number of features which contribute toward
determining the characteristic quality of the final output. Interestingly, all 50und different, yet at
H

      
     

 
  

 

1 The SPRUCE academic collaborators are Essex University (Marcel Tatham and Katherine Morton). Bristol
University (Eric Lewis and Rodney Sampson), Liverpool University (Colin Goodyear and Barrie Cheetham).

2 For a discussion oflhc architypal text-ID-spccch system see Holmes 1988, Chapter 6,
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the same time are all recognisably similar: you know when you are listening to a text-to-speech

. system, as opposed. say, to a resynthesis system or a compressed/coded recording.

0. General philosophy

The general idea of text-to-speech system is to produce a loose working model of a human being

reading text out aloud. The only part of the human process that is (usually) bypassed is the visual

input: the text is normally either input from a keyboard or from some text file. lf the model is

serious it cannot help but make claims aboutghe human process, some ofwhich are hard to justify

and others ofwhich are quite simply wrong.

In the model which supports synthesis human speech is assumed to be the result of the

concatenation of idealised segments of speech. each with its own intrinsic duration, which, on

demand from the brain, are strung together in the peripheral vocal mechanism. Because the

system is time~governed and because the neuro-muscular mechanism is being pushed to its

temporal limits the individual sounds are assumed to be degraded as they are conjoined (the

process known in phonetic theory as coarticulation).

’Dte underlying model represents each of the segments using a number of articulatory parameters

each of which initially has independent control. This independent control is then constrained at

the physical level by what combinations of parameter values are possible and what are not. In

addition at a higher level it is also constrained as to what combinations are cognitively possible

in any one particular language or dialect. Since, in general, text-to-speech systems are acoustically

based the articulatory specification of segments is translated into an acoustic parametric speci-

fication.

Additionally, whereas in the phonetic model the constraints on parameter value combinations

are made explicit, in acoustically based synthesis they are not: it is simply noted that for a given

segment a particular combination ofparameter values is the required specificatiOn to encode the

sound which results from the articulatory combination.

Above the vocal mechanism the model does not deal with physical systems at all, but with

cognitive units and the processes in which they play a role. Thus it is assumed that the individual

physical sounds have direct abstract cognitive correlates. This abstract level in the model

corresponds to phonology in linguistic descriptions of speech production. In linguistics the

phonological model on which text-to—speech systems are based takes as its primitives features

(parameters) which are combined to specify individual segments of speech. Decisions regarding

modifications of these segments take the form of production rules operating on the features of

segments.

____‘__________.__.————
—

3 An example of the first type of claim is that speech ‘5 composed of small segnents strung together; an example

of the second type '5 lhat the physical parameters of speaking (articulatory or acoustic) are independently

controllable.
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Prosodic features such as stress and intonation are assigned at this abstract level by rule. They
depend to a large extent on the categories of syntactic elements (words) and the overall syntactic
and phonological Structure of sentences.

1. Input
All systems accept plain text as input, although there is- sometimes the possibility of adding
markers to assist later stages ofthe system. An example ofthis is the addition ofsymbols indicating
the selection of basic intonation contours, or the position of nuclear stress in the input sentence.
The markers usually assist the generation of prosodic information either by relieving the system
of a computational stage, or by flagging exceptions or additions to the default procedures.

All systems currently respond to mis-spelled input text; that is, no system detects and corrects
spelling errors. This omission is often used to improve pronunciation by deliberately mis-spelling
words, thus fooling the system into what for it would be an incorrect pronunciation but which to
the listener sounds better than the default effort. The reason for this need often lies in a system's
inability to deal adequately with the text in the conversion from orthographic representation to
a phonological (phonemic) or phonetic representation.

2. Orthography to phoneme conversion
Acting on the idea in the underlying model that an initial stage of the reading aloud process
consists of converting strings of orthographic symbols into strings of phonemic symbols, all
text-to-spe'ech systems incorporate orthography to phoneme conversion almost always achieved
by the application of spelling rules. These recognise orthographic symbols or particular groupings
of symbols and interpret them within their immediate context to output a corresponding string
ofphonemic symbols. Orthography to phoneme conversion rules are more or less successful for
a large percentage ofwiirds in English, but a quite significant number ofwords cannot be handled”
by mic and need to be treated as exceptions held in a list. This is an unrealistic way of modelling
the human reading process.

Systems vary as to how many difficult words are assembled in the exceptions dictionary. The
number can he flew as 100 or as high as a few thousand: it depends on the sophistication of the
rule set. The strategy for employing the combined dictionary and rule system is to proceed by
searching firstly for a word in the incoming text in the dictionary: if it is there its phonemic
representation is retrieved; if it is not there then the word is passed to the orthography to
phoneme conversion mles to generate an appropriate phonemic representation.

3. Prosodic:
The underlying model deals with prosodics within phonology. Stress is handled. for example, by
assigning a stress pattern to individual words andthen by assigning sentence stress. Intonation is
also treated largely as a phonological phenomenon. Our ideas about stress (Fudge 1984) and
intonation (Pierrehumben 1981) have changed considerably during the past twenty years or so:
the recent views are only just beginning to filter into speech technology. In current text—to-speech
suprasegmental effects vary considerablyin their success. This is undoubtedly one of the key
areas where the usual systems fail — poor prosodic rendering is perceptually very noticeable.
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Difficulties arise from the fact that prosodic information is not encoded in the orthographic
representation, other than very crudely as punctuation marking sentence and phrase boundaries.
It needs to be generated within the system itself. with little in the input to work on. The best
systems perform a syntactic parse on the text asthe basis for a set of rules to generate appropriate
stress and intonation contours. The worst systems attempt to assign stress using only phonological
information (how the phonemes have been stning together), and only the punctuation markers
to select from a small set of stored canonical contours representing the intonation patterns.
Because the supponing information is minimal there is plenty of scope for error.

Similarly other aspects of the prosodics are handled more or less successfully. Thus, for example,
durational variations of individual segments can be derived by rules which examine its phono-
logical context and the general intonation contour of the sentence. Additionally, overall rate of
utterance can be adjusted for the entire text, but to achieve varying rates for portions of the text
usually means resorting to markers entered by hand in the text itself. For English, rhythm is
usually determined by the assertion in the model that stressed syllables occur isochronically.

4. Segments
The linguistic model on which synthesis is based takes the phonemic string and converts it by rule
to a phonetic string. This is done by examining the segmental context of each element and
determiningwhether it should be modified. In synthesis systems the modification takes the form
of a rewrite of the entire phonemic symbol as an entire phonetic symbol. Unlike linguistics
synthesis systems do not normally recognise that the segments are more effectively described in
terms of their component features. The reason for this departure from the model is partly
historical (early synthesis systems did not use feature-oriented phonology as their basis), and
partly to avoid the double conversion from phoneme symbol to phonological features and then—
to acoustic parameters. A linguist would argue that important information is thus lost because
there is no demonstrable one-to-one relationship between phonemes and acoustic parameters.
This is potentially a source of serious error in the system. When errors do occur they are fudged
by spurious increase in the number of entries in the allophones inventory. An example of this is
the need to have separate allophonic representations for plosives with and without aspiration or
with and without a release phase.

The string of phonetic or allophonic segments (essentially an abstract representation of how the
text is to be spoken) is converted into numerical representations for the purposes of driving the
synthesiser engine. Each sound is individually represented according to its parametric specifica-
tion (where the parameters are those dictated by the synthesiser) and where a sound corresponds
to a segment of the underling linguistic model. I am deliberately avoiding discussion of diphonc
based systems (see Holmes 1988, p. 77) since this notion has no foundation in linguistics.The
segment specification is accompanied by its so-called intrinsic duration — its canonical duration
subsequently modified by rules which adjust it according to segmental and prosodic context.

A characteristic of this model is the need to provide smooth transitions between the segments.
The advantage is that it is only necessary to specify as many segments as are found to be needed
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for a rough allophonic representation of the output (generally between 60 and 150). Thedisadvantage of the model is that the calculated transitions do not always sound natural.
5. Segment conjoining
Segment conjoining is accomplished by means of a set of transition rules. These vary from systemto system. but no system is entirely satisfactory. One problem is that the computational load isincreased markedly if the different parameters are treated by individual rules sets (which isnecessary ifmore natural sounding speech is required). Experiments have shown that conjoiningof the formant amplitude parameters is more critical perceptually than that of the formantfrequency parameters. In the model of human speech describes ooarticulation of individualarticulatory segments; one-to-one correlation between coarticulation and conjoining of acousticparameters has not been shown, though it may well be a fair approximation given the abovecomments about allophone inventories.

6. Segmental and supra-segmental fitting
Merging the segmental representation with the prosodic contour comes at different points indifferent systems. All are based on an underlying model which assumes that segmental andsupra-segmental systems are essentially separate, and all therefore require the prosodic contourto be fitted to the segment string. The level of difficulty here correlates with the degree ofsophistication of the prosodic contour itself. which in turn depends on the syntactic complexityof the sentencein question. and whether or not the system has anysyntactic information available.

The SPRUCE Proposals

SPRUCE addresses each of the above characteristics of current text-to-speech systems on theassumption that the each is a potential source of error leading to loss of naturalness.
0. General philosophy
It is important to have a clear understanding of exactly what it is that we are trying to simulate intext-to-speech systems — in particular what constitutes the naturalness that we can so clearly, ashuman beings, detect to be lacking in contemporary synthesis. But quite apart from the fact thatour model of human speech may not in fact have been appropriate, 3 description ofjust exactlywhat constitutes naturalness still eludes us. In SPRUCE the problem is sidestepped to someextent by incorporating a subsystem that is effectively a resynthesis of actual human speech.
Probably the most important departure from accepted synthesis philosophy found in SPRUCEis that speech is no longer regarded as a string of allophone sized segments ooarticulated together.The basis for building the output is shifted to the syllable. Parameters are no longer regarded asindependently controllable. Instead they are grouped. and relatively simple control signalscommand groups which respond as a unit to such commands. The group is an object with its ownbuilt in reactions to control signals; that is, the signal itself does not specify the procedures of
reaction. Groups are classified according to how they react to control signals.
After fairly extensive pilot work it was found that the best unit to form the basic building blocks
for synthesis was the syllable. There are a number of reasons for this, but they fall simply into
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two types: those concerned with the preservation of the elusive naturalness in real human speech,

and those which take into account the complexity of the corresponding conjoining algorithm.

The obvious units to examine are those determined linguistically: sentence or phrase, word,

morpheme, syllable, allophone. The correlation with naturalness is obvious — wholesentences

are the units which preserve the most naturalness. as shown by any number of demonstrations of

resynthesised speech; allophone sized units as used in almost all systems preserve the least

naturalness. The problem of course is that generality of the system inversely correlates: the most

general systems are based on allophones. the least general on whole sentences.

The choice for SPRUCE lay in the middle since sentences were too prescribed ,and abstractly
represented allophones toounnatural and too difficult to conjoin convincingly. We saw little point

in going for morphernes rather thanwords —why split words according to complicated rules when

whole words would do just as well? In the end the syllable was choSen as the basic unit on the

grounds of versatility. The tradeoff lay in the conjoining' rules: the larger the linguistic unit the
_ less susceptible it is to error in conjoining; listeners seem to be more tolerant ofjoins in synthetic

speech the larger the unit. This is certainly true of resynthesised speech. However. it was found

in pilot studies that we could satisfactorily conjoin syllables without perceived loss ofnaturalness,

though at the price of more elaborate rules than would have been needed for words. Figure 1
shaws a block diagram of the system.

Fig1 Block diagram of SPRUCE

text

phonologlcal . .
convorslon dummy
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1. Input

In its simplest version SPRUCE accepts text input in the same way as existing systems. It also
accepts marked text for special effects, though these are not to prevent failure of lower level parts
of the system as they are in current synthesis. Marked text in SPRUCE is reserved for adding
pragmatic markers (see below).

2. Orthography to phoneme conver sion
Orthography to phoneme conversion is avoided in SPRUCE, th ough it is there for use in special
circumstances. Under normal conditions all input words are searched for in a lexicon in which,

- {or each entry, are found various specifications and markers associated with word-items. The
projected lexicon is very large. Each lexical entry indicates a word's syntactic category, certain
prosodic features (such as word stress), and the syllahic make-up of individual words. The
representations here are completely abstract, though they obviously relate to normal orthography
and to the representations used lower in the system for the physical specification of syllables.
3. Prosodics
The principal prosodic feature to be assigned is intonation. In SPRUCE, after lexical filtering,
an input text has all its words marked according to their syntactic category. This enables a syntactic
parse of the sentences and phrases to be performed without much difficulty. The parse output is
used in assigning abstract markers of intonation to the text. These markers are later interpreted
in terms of actual time-governed f0 values. The model is based on Pierrehumhert (1981).
Provision is made for varying rate of delivery within a sentenceI once again dependent on the
syntactic parse. ‘
Human speakers, when reading a text aloud, need to understand what they are saying in order
to assign prosodic features unambiguously. SPRUCE does not attempt a semantic parse of the
text (except when pragmatic markers are available). and is therefore unable to have any
understanding. except that based on syntax, of the text. The prosodic unit however has been
designed to estimate the probability of error for any one solution (and some sentences may have
more than one solution) and to equate this score with a score associated with the probability of
the unit’s preferred solution occurring in the language. This procedure minimises the likelihood
of unusual contours which mightsound rediculous to the listener. When SPRUCE‘s prosodic
module fails it usually fails gracefully.

4. Segments
The objects from which the speech output is built are syllable sized. The lexicon assigns abstract
syllabic representations to the input text. These are later interpreted in terms of more physical
representations. The system holds a large inventory of files of normalised parametric analyses of
samples of real human speech. It should be stressed that these are not parameterised recordings:
they are normalisations which have been derived from parametric analyses. Each entry in the
inventory has markers attached which are associated with the way in which the syllable behaves
in certain contexts: this assists the process of conjoining Although these syllable-sized objects,
because of the normalisation, are abstract they are unlike the usual segment representations in
other systems. In the latter it is usual to use a single column of parameter values to represent
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each allophone — a highly abstract representation, since in no way does it convey any sense of
time. Despite the usual presence of a time marker for each allophone. such a representation
could not convey changes which occur during an allophone. In SPRUCE tiny variations in
parameter values during a syllable are preserved in the normalisation procedure.

5. Segment eonjoining
The conjoining process is surprisingly simple compared with some of the elaborate systems
devised for joining allophones. A small number of conjoining templates. together with the
markers found attached to each syllable determine the way in which syllables are conjoined.
Rhythm and other factors determine local variants on the templates themselves as they are
applied.

6. Segmental and supra-segmental fitting
Segmental and supra-segmental fitting are accomplished using an algorithm based on Silverman
(1987), designed to complement the earlier assignment of an abstract intonation contour. This
stage of intonation assignment is straightforward, the difficulties arising in the earlier stage rather
than here. This is the point'where anomalies of rhythm are tidied up.

The system leaves markers and hooks for altering some pragmatically determined changes such
as the conveying of attitude or emotion. The pragmatic information is contained in the only
markers allowed in the input text. For a discussion of the incorporation of effects dependent on
pragmatics into synthetic speech see Morton (forthcoming).

Results

Results of pilot studies for SPRUCE indicate promise. Greater naturalness has been achieved
with consistency than is managed by current text-to-speech synthesis systems. It remains to be
seen whether the Project can carry over the promise of the pilot work into a fully versatile yet
robust final system. The areas of greatest difficulty in putting together the system have been
highlighted as the normalisation of the parametrically analysed syllable units, efficient searching
of the lexicon and inventory of syllables, unit conjoining, and the method of indexing the final to
contour for subsequent processing under pragmatic constraint.
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