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1. INTRODUCTION

Our knowledpe of the processing stages that occur during the (ransformation of an acoustic speech signal into
a "perceived” message is far from compleie. One of the issues of concem is the extent to which speech
percepuon is influenced by processes at the auditory level (i.e. involving only the peripheral auditory system
(PAS) and not assumed (¢ be unique 10 speech processing) and the extent {o which phonetic processes (i.e.
unique (0 speech) are dominant. In recent years, evidence bhas been found which indicaes thav auditory
processing may be more influentiat than was once thought

One way of investigating the role of auditory factors in a particular perceptual task is to use nonhuman lisieners
{animal or machine) withoul any phonetic processing capabilities. Kubl and Miller [1] for example demonstrated
that chinchillas are capable of identifying synthetic plosive consonant-vowel syllables on the basis of voice onset
time (VOT) in a similar manner to humans. More strikingly, the phoneme boundary shifted with place of
anticulation in the same way. Thus this lask may perhaps be accomplished at an auditory level, rather than at
a phonetic level as was once thought. Damper et al. [2] have obtained similar results for the same task with a
synthedc listener in the form of a mathematical model (implemented in software), comprising a model of the
PAS coupled to an anificia) neural network (ANN) patiern classifier, Their work supports the findings of Kuhl
and Miller, and demonstrates the usefulness of 2 mathernatical model as a symbhetic listener. While it is doubtful
that 3 mathematical model will ever be construcied that mimicks the human PAS in most respects as closely as
the chinchilla's ear does, the use of a3 mathematical model has obvious advantages over the use of an animai
listener. Not only is it quicker and easier 10 train, but it also allows direct imervention, e.g. alteration of the
sharpness of the auditory fihers. This ability to manipulate the model parameters permits the robustness of the
system's performance to variations of the system parameters to be investigated.

It should be emphasized that the extrapolation of results from nonhuman listeners to human listeners is not
necessarily straightforward. The inability of a nonhuman lisiener to perform a given speech perceplion task may
be due (o poor uaining and/or poor medelling, rather than evidence Lhat a phonetic processing level is required.
Similarly, a positive result with a nonhuman listener probably at best indicates the potential of the PAS (o
perform the required processing, rather than offering definite proof that the PAS is solely responsible. However,
despile its shortcomings, at present the mathematical model is our most flexible research tool,

Our goal is 1o investigate the essential PAS features for carrying out cenain speech perceplion tasks through the
use of a synthetic listener in the form of a mathematical model. Qur model is not original, but derives from
many sources. In view of the work already done by Kuhl and Miller, and Damper et al. ciled above, the
idennfication of plosive voicing on the basis of VOT was selecied as the first perceptual task to test the model
with. This paper reporis on the progress we have made to date lowards this goal.
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2. THE PAS MODEL

Although our model differs in detail from that reported in [2,3], it is essentially a different implementation of
the same auditory processes. It thus comsists of the same basic compenents: an outer/middle ear filier, a
filierbank, an array of identical haircells, and a pattern recognizer in the form of an ANN, Despite differences
in all of these componenis belween the two models, they are expected (o be equivalent in all essential aspects.
(Note: In (2,3], an extended mode] including (he action of the dorsal acoustic siria is also discusssed. In (he
following discussion, references 1o the model in [2,3] are only up 10 the audilory nerve, and the results obined
(herewith.) The main components of our mode] are as follows:

2.1 Cuter/middie car filter

The combined action of the outer and middle ear produces a power gain in the mid-frequency range, and can
be described as a bandpass filier with a flat response between ca. 1kHz and 6kHz. Following Meddis and Hewitt
[4), we approximate the outer/middle ear wransfer function witb a digital high-pass filter of the form y(n) = 0.887
a(n) - 0.887 x(n-2) - 0.2243 y(n-1) + 0.7757 y(n-2), where y(n) is the output and x(n) is the input. For a signal
sampled at 20 kHz, this filier has a relatively at frequency response for frequencies above 1kHz, For signals
which have no significant energy above ca. 8 kHz, this high-pass filter should be an adequate approximation to
the required bandpass filter, Note: The model in [2,3] attempts to correct for outer/middle ear effects by adjusting
the gains of the filters in the filierbank, rather than prefillering the signals prior o entering the filterbank.

2.2 Filterbank
The filtexbank consists of a set of fourth order Gammatone bandpass filters, implemented digitally using a
multiple pass IR filter as described in [5,6).

2.3 Haircell and spike generation

The haircetl. action is approximated nsing Meddis's model B [7]. For this test, the haircelt model parameters were
calibrated so that the haircell response characieristics o a | kHz sinusoid were similar to those of the haircell
model described in [2,3], and were set as follows: A = 2.0, B = 300.0, g = 10000.0, y = 5.050505, 1 = 100.0,
1 =3000.0, x = 2000.0, sampling interval = 0.00005 and scale factor = 1500.0 {excluding the contribution from
the sampling interval). The output of the haircell model is the neural firing probability as a funclion of time,
from which neural discharges can be calculated for as many realizations as required with a random number
generator, along with the specification of an absolute refractory period (here 1 ms).

2.4 The anificial neural nctwork pattern recognizer

The well documented abilities of ANN's (o seif-learn and detect general regularities in data make them perhaps
an obvious, if nol the only, choice as the pattern recognizing element of the model. The ANN software for a
feed forward perceptron was developed in house. Other off-the-shelfl packages were also tried, and were found
w produce essentially the same results, so that any differences between our resuls and those in [2] are not
thought to be simply due to differences in the ANN sofiware. Note: In [2) the ANN sofiware of McClelland and
Rumelliant [9] was used,

3. METHOD

For the purpose of this test of our model, where possible and reasonable we have followed the procedure in [2,3]
quite closely (any differences are noted). Due 10 the overall similaritics of the models, we would expect similar
performances. In addition, we performied lisicning tests with human lisicners for the same stimuli that were
presented to the synthetic listener.
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3.1 Stimuli

The stimuli consisied of synihetic syllables produced by the Haskins laboratory (see Abramson and Lisker [8]),
sampled at 20 kHz, Three series were used, representing English bilabials ("ba”-"pa®), alveolars (“da"-"ta™) and
velars ("ga"-"ka"). Each series consisted of nine members differing in terms of VOT, which varied in sieps of
10 ms from 0 w 80 ms. (The VOT's were confirned by measurement.) These stimuli should be equivalent to
those used in (2], although they may not be identical, having been produced at different times. ’

3.2 Processing details
The processing steps each stimulus was subjected (o are as follows:

Siep 1: Level adjustment - by scaling to a simulated rms level of 65 dB SPL, where 0 dB SPL was se1 o a
digital amplitude value of 1.0.

Step 2: Outer/middle ear frequency filtering - with the IIR filter described in Section 2 above.

Step 3: Reduction of signal length - by extracting the 120 ms section starting 25 ms before the bursy (This
avoids unnecessary data processing yet includes the temporal region where the acoustc features distinguishing
the voicing contrast are known to lie.) Note: In [2] the signals were also shonened to 120 ms stanting at 25 ms
before the burst, but not until the binning stage. (See Step 7 below.) Data truncation at this carlier stage was
done merely (0 reduce the size of the data sets generated in Step 5 for practical reasons, and is nol considered
to have a significant effect on system performance.

Siep 4 Auditory filtering - in parallel through 128 Gammatone filters, (see Section 2 above) with centre
frequencies equally spaced on 2 Greenwood scale, with the lowest and highest centre frequency (CF) at 50 Hz
and 5000 Hz. Although the filier type is different, the number of filiers and their CFs were chosen in accordance
with [2,3).

Step 5: Generation of neural firing probabilities - using the haircell mode! (see Section 2 above).

Step 6: Generation of muliiple seis of neural firing daa from the neural firing probabilities - using a random
number generator and a refractory period of 1 ms. From each neurat finng probability function, 50 independent
data sels were penerated.

Step 7: Pattern vector generation - by binning the data inio bin widths of 10 ms by 8 channels, producing a 12
(= 120 ms / 10 ms} by 16 (= 128 channels / 8 channcls) matrix with 192 bins. The rows of the matrix {(of length
12) were then concatenated to form a single vector of length 192, which was used as the input o the ANN.

1.3 Artficial neural neiwork training and tesling

The ANN was designed with 192 input nodes, a single output node and one fully connected 16 node hidden
layer. Configurations with and without a hidden layer were tried. The inclusion of a hidden layer was not found
10 have a significant effect on the resulls, which is consistent with the findings in (2].

Step 1: Artificial neural network Uaining - by scparate training for each of the three syllable scrics (bilabial,
alveolar and velar) on the endpoints (0 ms VOT and 8¢ ms VOT) using 1000 trials, where each trial consists
of tie presentation of 50 different pairs of endpoint daia sets. Althongh fewer wials than reported in (2] (1000
as compared to 3000}, we found that with our software the error typically dropped 1o 1.0 % of its sianing value
after 1000 iterations, afier which the resulis did not change sighificantly with further iterations. It is difficult to
compare the eror values directly with those given in [2), as the error measures are not the same.
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Step 2: Artificial neural network iesting - ecach series was tested using 50 representations (the same number used
in [2]) of each series member. The output of the ANN is in the form of an "activation function”, which in this
case takes on values between 0 and 1, where O and 1 represent the endpoints the net was trained on. Mean
activation functions and labelling functions (LF's) were derived. To derive the LF's, the aclivation value dividing
the two categories in each series was set to 0.5.

3.4 Human listening ests

Separate tesis were carried out for each syllable series (bilabial, alveolar, and velar). Five native English speakers
{drawn from members of the department) were presented with 10 copies of each member of the given test series
in random order, and asked to label the stimuli according to a two alternative forced choice paradigm.

4. RESULTS AND DISCUSSION

Figures 1a and Ic show the mean activation functions and LF's obtained with our synthetic listener. The mean
activation functions of Damper et al.’s synthetic listener [2, Fig. 9 upper section] have been redrawn in Fig. 1b
for comparison. Damper ¢l al.'s results were also obtained with an ANN with a futly connected hidden layer of
16 nodes. Neither Damper et al. nor we found any significant differences between resulls obtained with and
without a hidden layer. Figure 1d shows the mean LF's {averaged over lisieners) of our human subjects. The
50% caegory boundaries, obtained by simple linear interpolation, are summarized in Table |, where UCL and
DAMPER refer to our results and those of Dramper €1 al. respectively. Note: The values quoted in the wable for 3
Damper et al.'s resulis differ from those quoted in [2}, as the latter were derived from an inappropriate probit
analysis of the mean activation function.

The human listener mean LF's for bilabial, alveolar and velar continua varying in VOT reported in the literature
(sec e.g. [1]) typically display similar sigmoidal shapes with approximately equispaced, parallel straight line
sections, reflecting a shift of phoneme boundary with place of articulation. The 50% category boundary for the
bilabial, alveolar and velar series is typically in the region of 25 ms, 35 ms and 45 ms respectively. An
examination of Table 1 shows that all the phoneme boundaries obtained agree with these values for the alveolar
and velar places. Only for the bilabial continuum do significant differences occur. Whereas our human listeners
evidence behaviour close 10 that reporied in the literature, our computational model shows a bitabial boundary
about 20 ms too long. On the other hand, Damper et al.'s computational results show a bilabial boundary about
10 ms wo short. However, our results do not exhibit the comrect relative positions of the three phoneme
boundaries with place of anticulation, whereas Damper et al.’s do. 1t is ineresting 10 note that just as Table 1
shows most variability for the bilabial boundary, there was also more inter-individual variability for this
continuum than for the other two..

The following separate modifications to the training procedure were also ried without significandy affecting the
results: 1) increase of the number of trials used in the waining by a factor of 2, 2) increase of the number of
realizations used n each trial from 50 wo 300 and 3} replacemem of the ANN software with an aliernative
package. We are currently invesligating various model details 1o help explain the observed differences beiween
our model and that of [2.3].°
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Table 1. Phoneme boundaries for three plosive voicing continva oblained {rom buman and synthetic listeners.

Bilabial Alveolar Velar
UCL activation - 470 ms 3l6ms 45.5 ms
UCL labeling 46.3 ms 32.1 ms 45.6 ms
UCL labeling (human) 219 ms 26ms 4.7 ms
DAMPER activation 15.8 ms 0Tms 433 ms

3.. CONCLUSIONS AND WORK IN PROGRESS

While it is pot the purpose of this investigation 1o perform a comprehensive comparative study of the various
different PAS models that exist in the literature, it is worth noling hat these models can not be considered
functionally equivalent unless it can be demonstrated that they can reproduce equivalent results on a given
perceptual task, Our current results hint that there may be very subie aspects of auditory processing thal give
rise 1o the variation in phoneme boundary with place of articulation found for the Hacking stimuli. Clearly it is
important to know how sensitive the sysicm performance is (o variations of the model parameters, not only for
the purpose of developing useful PAS models, bul also for understanding their influence on perceptual
phenomena. We are currently still investigating the cause(s) of the performance differences between our model
and that of Damper ¢t al. Once this has been resolved, we intend 10 vse the model w investigate the role of the
PAS in various speech perception tasks, including the perceplion of affricates and fricatives, and (o relate
diminished perceptual performance with degradations of PAS model parameters from their “optimum conditions'.
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