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1. INTRODUCTION

Our knowledge of the processing stages that occur during the transionnation of an acoustic speech signal into

a "perceived' message is far from complete. One of the issues of concern is the extent to which speech
perception is influenced by processes at the auditory level (i.e. involving only the peripheral auditory system
(PAS) and not assumed to be unique to speech processing) and the extent to which phonetic processes (i.e.
unique to speech) are dominant. In recent years. evidence has been found which indicates that auditory

processing may be more influential than was once thought.

One way of investigating the role of auditory factors in a particular perceptual task is to use nonhuman listeners

(animal or machine) without any phonetic processing capabilities. Kuhl and Miller [1] for example demonstrated
that chinchillas are mpahle ol’ identifying synthetic plosive consonant-vowel syllables on the basis of voice onset

time (VOT) in a similar manner to huotans. More strikingly, the phoneme boundary shined with place of
articulation in the same way. Thus this task may perhaps be accomplished at an auditory level. rather than at

a phonetic level as was once thought Damper et al. [2] have obtained similar results for the same task with a

synthetic listener in the form of a mathematical model (implemented in software). comprising a model ol‘ the
PAS coupled to an artificial neural network (ANN) pattern classifier. Their work supports the findings of Kuhl
and Miller. and demonsu'ates the usefulnss of a mathematical model as a synthetic listener. While it is doubtful

that a mathematical model will ever be constructed that mimicks the human PAS in most respects as closely as
the chinchilla's ear does, the use of a mathematical model has obvious advantages over the use of an animal
listener. Not only is it quicker and easier to uain. but it also allows direct intervention. eg. alteration of the
sharpness of the auditory filters. This ability to manipulate the model parameters permits the robustness of the

system's performance to variations of the system parameters to be investigated

it should be emphasized that the estrapotation of results from nonhuman listeners to human listean is not
necessarily straightforward. The inability of a nonhuman listener to perform a given speech perception task may

be due to poor uaining and/or poor modelling. rather than evidence that a phonetic processing level is required.

Similarly. a positive result with a nonhuman listener probably at best indicates the potential or the PAS to

perform the required processing. rather than altering definite proof that the PAS is solely rcsponsihle. However.

despite its shortwmingS. at present the mathematical model is our most flexible research tool.

Our goat is to investigate the essential PAS features {or carrying out certain speech perception mks through the

use of a synthetic listener in the form ol’ a mathematical model. Our model is not original, but derives from

many sources. in view of the work already done by Kuhl and Miller. and Damper et al. cited above. the
identification of plosive voicing on the basis of VOT was selected as the first perceptual task to test the model

with. This paper repons on the progress we have made to date towards this goal.
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2. THE PAS MODEL

Although our model differs in detail from that reponed in [2.3]. it is essentially a different implementation of
the same auditory prowsses. It thus consists of the same basic components: an outer/middle ear filter. a
fillcrhanlc an array of identical haircells. and a pattern recognizer in the form of an ANN. Despite differenes
in all of these components between the two models. they are expected to be equivalent in all essential pects.
(Note: in [2.3]. an extended model including the action of the dorsal acoustic atria is also discusssed. In the
following discussion. references to the model in [2.3] are only up to the auditory nerve. and the results obtained
therewith.) The main components of our model are as follows:

2.1 Outer/middle car filter
The combined action of the outer and middle ear produces a power gain in the mid-frequency range. and can
be described as a bandpass filter with a flat response between a. IkHz and Sid-ll. Following Meddis and Hewitt
[4], we approximate the outer/middle ear transfer function with a digital high-pass filter of the fon-n y(n) = 0.887
x(n) - 0.887 x(n-2) - 0.2243 y(n—l) + 0.7757 y(n-2). where y(n) is the output and x(n) is the input For a signal
sampled at 20 kHz. this filter has a relatively flat frequency response for frequencies above lkHz. For signals
which have no significant energy above at. 8 kHz. this high-pas filter should be an adequate approximation to
the required bandpass filter. Note: The model in [2.3] attempts to correct for outer/middle ear effects by adjusting
the gains of the filters in the filterbank. rather than preliltering the signals prior to entering the filterbank.

2.2 Ftlterbank
The filterbanit consists of a set of fourth order Gammatonc bandpass filters. implemented digitally using a
multiple pass IIR filter as described in [5.6].

2.3 Haircell and spike generation
The haireellaction is approximated using Meddis's model B [7]. For this test. the haircell model parameters were
calibrated so that the haireell response characteristics to a I kill sinusoid were similar to those of the haircell
model described in [2.3]. and were set as follows: A = 2.0. B = 300.0. g = 10000.0. y = 5.050505. I = I00.0.
r = 5000.0. x = 2000.0. sampling interval = 0.00005 and scale factor = 1500.0 (excluding the contribution from
the sampling interval). The output of the haircell model is the neural firing probability as a function of time.
from which neural discharges can be calculated for as many realizations as required with a random number
generator. along widt the specification of an absolute refractory period (here I ms).

2.4 Tile artificial neural network pattern recognizer
The well documented abilities of ANN‘s to self-learn and detect general regularities in data make them perhaps
an obvious. if not the only. choice as the pattern recognizing element of the model. The ANN software for a
feed forward percean was developed in house. Other off-the-shelf packages were also tried. and were found
to produce essentially the same results. so utat any differences between our results and those in [2] are not
thought to be simply due to differences in the ANN software. Note: In [2] the ANN software of MeCchland and
Rumelltart [9] was used.

3 METHOD

For the purpose of this test of our model. where possibIe and reasonable we have followed the procedure in [2.3]
quite closely (any differences are noted). Due to the overall similarich of the models. we would expect similar
performances in addition. we perfomtcd listening tests with human listeners for the same stimuli that were
presenth to the synthetic listener.
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3.1 Stimuli
The stimuli consisted of synthetic syllables produced by the Haskins laboratory (see Abramson and Lisker [8]).

sampled at 20 kHz. Three series were used. representing English bilabials ('ba'-"pa'). alveolars ('da‘-‘la') and
velars ('ga'-'lot'). Bch series consisted of nine membes differing in terms of VOT. which varied in steps of

lo ms from 0 to 80 ms. (The VOTs were confirmed by measurement.) These stimuli should be equivalent to

those used in [2]. although they may not be identical. having been produced at different times. '

3.2 Processing details
The processing steps each stimulus was subjected to are as follows:

Step 1: Level adjustment - by scaling to a simulated rnts level of 65 dB SPL where 0 dB SPL was set to a
digital amplitude value of ID.

Step 2: Outer/middle ear frequency filtering - with the [1R filter described in Section 2 above.

Step 3: Reduction of signal length - by enacting the 120 ms section starting 25 ms before the burst (This

avoids unnecessary data processing yet includes the temporal region where the acoustic features distinguishing

the voicing conu-ast are known to lie.) Note: in [2] the signals were also shortened to l20 ms starting at 25 ms

before the burst. but not until the binning stage, (See Step 7 below.) Data truncation at this earlier stage was
done merely to reduce the size of the data Sets generated in Step 5 for practical reasons. and is not considered
to have asignificant effect on system performance.

Step 4: Auditory filtering - in parallel through 128 Gammatone fitters. (see Section 2 above) with centre

frequencies equally spaced on a Greenwood scale. with the lowest and highest centre frequency (CF) at 50 Hz

and 5000 Hz. Although the filter type is different. the number of filters and their CFs were chosen in accordance

with [2.3].

Step 5: Generation of neural firing probabilities - using the haircell model (see Section 2 above).

Step 6: Generation of multiple sets of neural firing data from the neural firing probabilities - using a random
number generator and a refractory period of I ms. From each neural firing probability function, 50 independent
data sets were generated.

Step 7: Pattern vector generation - by binning the data into bin widths of 10 ms by 8 channels. producing a 12

(= [20 ms I 10 ms) by 16 (= l28 channels / 3 channels) matrix with l92 bins. The rows of the matrix (of length
12) were then concatenated to form a single vector of length [92, which was used as the input to the ANN.

3.3 Artificial neural network training and testing
The ANN was designed with 192 input nodes. a single output node and one fully connected 16 node hidden
layer. Configurations with and without a hidden layer were tried. The inclusion of a hidden layer was not found

to have a significant effect on the results which is consistent with the findings in [2].

Step 1: Artificial neural network training . by separate training for each of the three syllable series (bilabial.
alveolar and velar) on the endpoinls (0 ms VOT and 80 ms VOT) using 1000 trials. where each trial consists

of the presentation of 50 different pairs of endpoint data sets. Although fewer trials than reported in [2] (l000
as compared to 3000). we found that with our software the error typically dropped to 1.0 fit of its starting value
after l000 iterations. after which the results did not change significantly with further iterations. it is difficult to

compare the error values directly with those given in [2]. as the error measures are not the same.
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Step 2: Artificial neural network testing - each series was tested using 50 representatidns (the same number used
in [2]) of each series member. The output of the ANN is in the form of an "activation function". which in this
case takes on values between 0 and l. where 0 and l represertt the endpoints the net was uained on. Mean
activation functions and labelling functions (LFs) were derived. To derive the LFs. the activation value dividing
the two categories in each series was set to 0.5.

3.4 Human listening tests
Separate tests were carried out for each syllable series (bilabial. alveolar. and velar), Ftve native English speakers
(drawn from manbers of the department) were presented with 10 copies of each member of the given test series
in random ordu. and asked to label the stimuli according to a two alternative forced choice paradigm.

4. RESULTS AND DISCUSSION

Figures Ia and lc show the mean activation funcuons and LFs obtained with our synthetic listener. The mean
activation functions of Damper et al.'s synthetic listener [2. Fig. 9 upper section] have been redrawn in Fig. 1b
for comparison. Damper et al.'s results were also obtained with an ANN with a fully connected hidden layer of
16 nodes. Neither Damper et al. nor we found any significant differences between results obtained with and
without a hidden layer. Figure ld shows the mean LFs (averaged over listeners) of our human subjects. The
50% category boundaries. obtained by simple linear interpolation. are summarized in Table l. where UCL and
DAMPER refer to our results and those of Damper et al. respectively. Note: The values quoted in the table for
Damper et al.'s results differ from those quoted in [2]. as the latter were derived from an inappropriate probit
analysis of the mean activation function.

The human listener mean LFs for bilabial, alveolar and velar continua varying in VOT reported in the literature
(see e.g. [l]) typile display similar sigmoidal shapes with approximawa equispaced. parallel suaight line
sections. reflecting a shill of phoneme boundary with place of articulation. The 50% category boundary for the
bilabial. alveolar and velar series is typiwa in the region of 25 ms. 35 ms and 45 ms respectively. An
examination of Table I shows that all the phoneme boundaries obtained agree with these values for the alveolar
and velar places. Only for the bilabial continuum do significant differences occur. Whereas our human listeners
evidence behaviour close to that reponed in the literature. our computational model shows a bilabial boundary
about 20 ms too long. 0n the other hand. Damper et al.‘s computational results show a bilabial boundary about
10 ms too shorL However. our results do not exhibit the correct relative positions of the three phoneme
boundaries with place of articulation, whereas Damper et al.'s do. It is interesting to note that just asTable 1
shows most variability for the bilabial boundary. there was also more inter-individual variability for [his
continuum than for the other two.

The following separate modifications to the training procedure were also uied without signifimdy affecting the
results: 1) increase of the number of uials used in the training by a factor of 2. 2) increase of the number of
realirations used in each trial from 50 to 300 and 3) replacsment of the ANN software with analternative
package. We are currently investigating various model details to help explain the observed differences between
our model and that of [2.3].'

Proc.l.O.A. Vol N Pan 6 (IDS  



  

Proceedings of the Institute of Acoustics

'PHONEI'IC CLASSIFICATION

Table I. Phoneme boundaries for three plosive voicing continua obtained from human and synthetic listeners.

 

5. CONCLUSIONS AND WORK IN PROGRESS

While it is not the purpose of this investigation to perform a comprehensive comparative study of the various

different PAS models that exist in the literature. it is wonh noting that these models can not be considered

functionally equivalent unless it can be demonstrated that they can reproduce equivalent results on a given

perceptual task. Our current results hint that there may be very subtle aspects of auditory processing that give

rise to the variation in phoneme boundary with place of articulation found for the Haskins stimuli. Clearly it is

irnponant to know how sensitive the system performance is to variations of the model parameters not only for

the purpose of developing useful PAS models. but also for understanding their influence on perceptual

phenomena We are currenuy still investigating tlte muse“) of the performance differences between our model

and that of Damper et at. Once this has been resolved. we intend to use the model to investigate the role of the

PAS in various speech perception tasks. including the perception of affricotes and fricatives. and to relate

diminished perceptual performance with degradations of PAS model parameters from their ‘optimum onnditions'.
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